精英家教网 > 初中数学 > 题目详情
2.计算:
(1)(-12)+(-13)-(-14)-(+15)+(+16)
(2)(-$\frac{1}{4}$)-(-$\frac{5}{7}$)+(-0.75)+$\frac{2}{7}$-(+$\frac{13}{25}$).

分析 (1)先化简,再算加减法;
(2)先算同分母分数,再算加减法.

解答 解:(1)(-12)+(-13)-(-14)-(+15)+(+16)
=-12-13+14-15+16
=-40+30
=-10;
(2)(-$\frac{1}{4}$)-(-$\frac{5}{7}$)+(-0.75)+$\frac{2}{7}$-(+$\frac{13}{25}$)
=(-$\frac{1}{4}$-0.75)+($\frac{5}{7}$+$\frac{2}{7}$)-$\frac{13}{25}$
=-1+1-$\frac{13}{25}$
=-$\frac{13}{25}$.

点评 考查了有理数加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式. ②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图所示,正方形OABC的两边OA,OC分别在x轴、y轴上,点D(5,3)在边AB上,以点C为中心,把△CDB旋转90°.
(1)旋转后点D的对应点D′的坐标为(-2,0)或(2,10);
(2)求线段DD′的长;
(3)求线段CD在旋转过程中扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在四边形ABCD中,AB∥CD,AD∥BC,AB=CD,AD=BC,点E是AD的中点,连接BE并延长交CD的延长线于点F.
(1)试说明:△ABE≌△DFE;
(2)连接CE,当BE平分∠ABC时,试说明:CE⊥BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算
(1)12-(-18)+(-5)-15;
(2)-81÷$\frac{9}{4}$×(-$\frac{4}{9}$);
(3)1÷($\frac{1}{6}$-$\frac{1}{3}$)×$\frac{1}{2}$; 
 (4)-14-$\frac{1}{6}$×[2-(-3)2];
(5)-1.57×(-0.75)+0.57×(-$\frac{3}{4}$);
(6)1$\frac{1}{24}$-($\frac{3}{8}$+$\frac{1}{6}$-$\frac{3}{4}$)×24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算:(-1)2016+$\sqrt{\frac{1}{4}}$+(π-3.14)0-2-2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在△ABC中,AB=AC,AD是BC边上的中线,点E是AC边上一点,且AE=$\frac{1}{3}$AC,连接BE.
(1)如图1,连接DE,若∠ABC=60°,AC=12,求DE的长.
(2)如图2,若点F是BE的中点,连接AF并延长交BC于点G,求证:DC=2BG.
(3)如图3,若∠BAC=90°,过点A作AN⊥BE交BE于点M,连接DM,请直接写出DM与AB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:
(1)3$\frac{3}{4}$-8$\frac{3}{4}$-4$\frac{1}{4}$+1.25
(2)($\frac{1}{2}$-$\frac{2}{3}$+$\frac{3}{4}}$)×12
(3)9$\frac{6}{7}$×(-7)
(4)-1+|-3|-(-2)+(-2016)×0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图①所示.以Rt△ABC的三边为直径分别作三个半圆.已知以AC为直径的半圆的面积为S1.以BC为直径的半圆的面积为S2
(1)求以AB为直径的半圆的面积S;
(2)如果将图中半圆改为分别以Rt△ABC的三边为斜边的等腰直角三角形,如图②所示.那么图(1)中的结论是否仍成立?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a,b,c,那么三角形的面积S与a,b,c之间的关系式是S=$\sqrt{\frac{a+b+c}{2}•\frac{a+b-c}{2}•\frac{a+c-b}{2}•\frac{b+c-a}{2}}$①,请你举出一个例子,说明关系式①是正确的.

查看答案和解析>>

同步练习册答案