精英家教网 > 初中数学 > 题目详情

【题目】如图,在长方形ABCD中,把△BCD沿对角线BD折叠得到△BED,线段BEAD相交于点P,若AB=2BC=4

1)求BD长度;(2)求点PBD的距离.

【答案】(1)BD=2(2)PBD的距离为.

【解析】

(1)由勾股定理直接得出;

(2)AP=x,证出△ABP≌△EDP,可知EP=xPD=8x,根据翻折不变性,可知ED=DC=AB=2,然后在Rt△PED中,利用勾股定理求出x,再由三角形的面积即可求出结论.

(1)∵四边形ABCD是长方形,

∴∠C=90°CD=AB=2

∴BD==2

(2)△APB△DEP中,

∴△APB≌△DEP

∴AP=EP

AP=x,则EP=xPD=4x

Rt△PED中,

x2+22=(4x)2

解得x=

AP=

∴PD=4=

设点PBD的距离为h

SBDP=

解得:h=

即点PBD的距离为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=BC,ABC=120°,AC=2OABC的外接圆,D是优弧AmC上任意一点(不包括A,C),记四边形ABCD的周长为y,BD的长为x,则y关于x的函数关系式是(  )

A. y=x+4 B. y=x+4 C. y=x2+4 D. y=x2+4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义一种运算:,其中k是正整数,且k ≥2,[x]表示非负实数x的整数部分,例如[2.6]=2,[0.8]=0.若,则的值为( )

A.2015B.4C.2014D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,ADBC,∠B=90°,对角线AC的垂直平分线与边ADBC分别相交于点EF.

1)求证:四边形AFCE是菱形;

2)若AB=6BC=8,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1O为直线AB上一点,过点O作射线OC,∠AOC30°,将一直角三角板(∠M30°)的直角项点放在点O处,一边ON在射线OA上,另一边OMOC都在直线AB的上方.

1)将图1中的三角板绕点O以每秒的速度沿逆时针方向旋转一周.如图2,经过t秒后,ON落在OC边上,则t 秒(直接写结果).

2)在(1)的条件下,若三角板继续转动,同时射线OC也绕O点以每秒10°的速度沿逆时针方向旋转一周,当OC转动9秒时,求∠MOC的度数.

3)在(2)的条件下,它们继续运动多少秒时,∠MOC35°?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:

某校要举办足球赛,若有5支球队进行单循环比赛(即全部比赛过程中任何一队都要分别与其他各队比赛一场且只比赛一场),则该校一共要安排多少场比赛?

构建模型:

生活中的许多实际问题,往往需要构建相应的数学模型,利用模型的思想来解决问题.

为解决上述问题,我们构建如下数学模型:

1)如图①,我们可以在平面内画出5个点(任意3个点都不在同一条直线上),其中每个点各代表一支足球队,两支球队之间比赛一场就用一条线段把他们连接起来.由于每支球队都要与其他各队比赛一场,即每个点与另外4个点都可连成一条线段,这样一共连成5×4条线段,而每两个点之间的线段都重复计算了一次,实际只有 条线段,所以该校一共要安排 场比赛.

2)若学校有6支足球队进行单循环比赛,借助图②,我们可知该校一共要安排__________场比赛;

…………

3)根据以上规律,若学校有n支足球队进行单循环比赛,则该校一共要安排___________场比赛.

实际应用:

491日开学时,老师为了让全班新同学互相认识,请班上42位新同学每两个人都相互握一次手,全班同学总共握手________________次.

拓展提高:

5)往返于青岛和济南的同一辆高速列车,中途经青岛北站、潍坊、青州、淄博4个车站(每种车票票面都印有上车站名称与下车站名称),那么在这段线路上往返行车,要准备车票的种数为__________种.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小炎遇到这样一个问题:如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,连结EF,则EF=BE+DF,试说明理由.

小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段ABAD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决了这个问题(如图2).

参考小炎同学思考问题的方法,解决下列问题:

1)如图3,四边形ABCD中,AB=AD∠BAD=90°EF分别在边BCCD上,∠EAF=45°.若∠B∠D都不是直角,则当∠B∠D满足_ 关系时,仍有EF=BE+DF

2)如图4,在△ABC中,∠BAC=90°AB=AC,点DE均在边BC上,且∠DAE=45°,若BD=1EC=2,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.ABC,AC的垂直平分线分别交ACAB于点D. F,BEDFDF的延长线于点E,已知∠A=30°BC=2AF=BF,则四边形BCDE的面积是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.

(1)求甲车速度;

(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?

查看答案和解析>>

同步练习册答案