精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABCABBC,∠ABC90°,BMAC边中线DE分别在边ACBCDBDEEFAC于点F以下结论:①△BMD≌△DFE;②△NBE∽△DBC;③AC2DF;④EFABCFBC其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

根据全等三角形的判定和性质及相似三角形的判定和性质即可.

解:∵AB=BC∠ABC=90°,BMAC边中线,

∠MBC=∠C =45°,BM=AM=MC

DBDE,

∠DBE∠DEB

∠DBM+45°=∠CDE+45°.

∠DBM∠CDE.

EFAC,

∠DFE=∠BMD=90°

△BMD△DFE

△BMD△DFE.

故①正确.

由① 可得∠DBE∠DEB,∠MBC∠C

△NBE△DCB

故②错,对应字母没有写在对应的位置上.

△BMD△DFE

BM=DF,

BM=AM=MC

AC=2BM,

AC=2DF.

故③正确

易证△EFC△ABC,所以=,

EFAB=CFBC

故④正确

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A,B分别在x轴、y轴上(OA>OB),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①AC=BC;②若OA=4,OB=2,则△ABC的面积等于5;③若OA﹣OB=4,则点C的坐标是(2,﹣2).其中正确的结论有(

A. 3个 B. 2个 C. 1个 D. 0个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB=90°,ABC=30°,AC=2cm.现在将ABC绕点C逆时针旋转至A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在课堂上,老师将除颜色外都相同的1个黑球和若干个白球放入一个不透明的口袋并搅匀,让全班同学依次进行摸球试验,每次随机摸出一个球,记下颜色再放回搅匀,下表是试验得到的一组数据.

摸球的次数n

100

150

200

500

800

摸到黑球的次数m

26

37

49

124

200

摸到黑球的频率

a

表中a的值等于______;

估算口袋中白球的个数;

用画树状图或列表的方法计算连续两名同学都摸出白球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形,在上取两点左边),以为边作等边三角形,使顶点上.

(1)PEF的边长;

(2)PEF的边在线段上移动.分别交于点求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Ⅰ)已知方程①

请判断这两个方程是否有解?并说明理由;

Ⅱ)已知 ,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,E为BC上一点,以CE为直径作O,AB与O相切于点D,连接CD,若BE=OE=2.

(1)求证:A=2DCB;

(2)求图中阴影部分的面积(结果保留π和根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于AB两点(点A在点B左侧),与y轴交于点C、设直线CMx轴交于点D

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过AB两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.

(3)设直线ykx+2与抛物线交于QR两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔P的南偏东60方向,距离灯塔100海里的A处,它计划去往位于灯塔P的北偏东45方向上的B.(参考数据≈1.414 ≈1.732 ≈2.449

1)问B处距离灯塔P有多远?(结果精确到0.1海里)

2)假设有一圆形暗礁区域,它的圆心位于射线PB上,距离灯塔190海里的点O.圆形暗礁区域的半径为50海里,进入这个区域,就有触礁的危险.请判断海轮到达B处是否有触礁的危险,并说明理由.

查看答案和解析>>

同步练习册答案