精英家教网 > 初中数学 > 题目详情

【题目】如图, 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知

(1)求 的长;
(2)求图中阴影部分的面积.

【答案】
(1)

解:在Rt△ABC中,AB= = =2 .

∵BC⊥OC

∴BC是⊙O的切线

又∵AB是⊙O的切线

∴BD=BC=

∴AD=AB-BD=


(2)

解:在Rt△ABC中,sinA= ==.

∴∠A=30°.

∵AB切⊙O于点D.

∴OD⊥AB.

∴∠AOD=90°-∠A=60°.

=tanA=tan30°.

=.

∴OD=1.

S阴影==.


【解析】(1)在Rt△ABC中,利用勾股定理求出AB的长,然后根据切线的判定证出BC为切线,然后可根据切线长定理可求解.
(2)在Rt△ABC中,根据∠A的正弦求出∠A度数,然后根据切线的性质求出OD的长,和扇形圆心角的度数,再根据扇形的面积公式可求解.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握切线的性质定理(切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按拟定的价格进行试销,通过对5天的试销情况进行统计,得到如下数据:

单价x(元/件)

30

34

38

40

42

销量y(件)

40

32

24

20

16

1)通过对上面表格中的数据进行分析,发现销量(件)与单价(元/件)之间存在一次函数关系,求关于的函数关系式(不需要写出函数自变量的取值范围);

2)预计在今后的销售中,销量与单价仍然存在(1)中的关系,且该产品的成本是20/.为使工厂获得最大利润,该产品的单价应定为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1.把△ABC分别绕直线AB和BC旋转一周,所得几何体的地面圆的周长分别记作l1 , l2 , 侧面积分别记作S1 , S2 , 则( )

A.l1:l2=1:2,S1:S2=1:2
B.l1:l2=1:4,S1:S2=1:2
C.l1:l2=1:2,S1:S2=1:4
D.l1:l2=1:4,S1:S2=1:4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是(结果保留π和根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F. (Ⅰ)试判断直线BC与⊙O的位置关系,并说明理由;
(Ⅱ)若BD=2 ,BF=2,求阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)阅读以下内容:

已知实数x,y满足x+y=2,且求k的值.

三位同学分别提出了以下三种不同的解题思路:

甲同学:先解关于x,y的方程组,再求k的值.

乙同学:先将方程组中的两个方程相加,再求k的值.

丙同学:先解方程组,再求k的值.

(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.

(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)

请先在以下相应方框内打勾,再解答相应题目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,下列能判定AB∥CD的条件有( )个.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.
(1)求证:AD平分∠BAC;
(2)若CD=1,求图中阴影部分的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧 于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4 时,求 的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.

查看答案和解析>>

同步练习册答案