【题目】(1)阅读以下内容:
已知实数x,y满足x+y=2,且求k的值.
三位同学分别提出了以下三种不同的解题思路:
甲同学:先解关于x,y的方程组,再求k的值.
乙同学:先将方程组中的两个方程相加,再求k的值.
丙同学:先解方程组,再求k的值.
(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.
(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)
请先在以下相应方框内打勾,再解答相应题目.
【答案】我最欣赏(1)中的乙同学的解题思路,k=,评价见解析.
【解析】试题分析:选择乙同学的解题思路,①+②得出5x+5y=7k+4,求出x+y==2,即可求出答案.
试题解析:
我最欣赏(1)中的乙同学的解题思路,
,
①+②得:5x+5y=7k+4,
x+y=,
∵x+y=2,
∴=2,
解得:k=,
评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;
乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;
丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.
科目:初中数学 来源: 题型:
【题目】如图,梯子AB斜靠在一竖直的墙上,梯子的底端A到墙根O的距离AO为2米,梯子的顶端B到地面的距离BO为6米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离A′O等于3米,同时梯子的顶端B下降至B′.求梯子顶端下滑的距离BB′.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列条件中,不能证明△ABC≌△DCB的是( )
A.AB=CD,AC=BD
B.AB=CD,∠ABC=∠BCD
C.∠ABC=∠DCB,∠A=∠D
D.AB=CD,∠A=∠D
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com