精英家教网 > 初中数学 > 题目详情

【题目】如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧 于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4 时,求 的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.

【答案】
(1)证明:连接OQ.

∵AP、BQ是⊙O的切线,

∴OP⊥AP,OQ⊥BQ,

∴∠APO=∠BQO=90°,

在Rt△APO和Rt△BQO中,

∴Rt△APO≌Rt△BQO,

∴AP=BQ


(2)解:∵Rt△APO≌Rt△BQO,

∴∠AOP=∠BOQ,

∴P、O、Q三点共线,

∵在Rt△BOQ中,cosB= = =

∴∠B=30°,∠BOQ=60°,

∴OQ= OB=4,

∵∠COD=90°,

∴∠QOD=90°+60°=150°,

∴优弧 的长= = π


(3)解:∵△APO的外心是OA的中点,OA=8,

∴△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8


【解析】(1)连接OQ.只要证明Rt△APO≌Rt△BQO即可解决问题;(2)求出优弧DQ的圆心角以及半径即可解决问题;(3)由△APO的外心是OA的中点,OA=8,推出△APO的外心在扇形COD的内部时,OC的取值范围为4<OC<8;
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对弧长计算公式的理解,了解若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图, 的直角边 上一点,以 为半径的 与斜边 相切于点 ,交 于点 .已知

(1)求 的长;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:(1)﹣2+12a﹣18a (2)(x+4)-16x

(3)(x-2x)+2(x-2x)+1 (4)-28n+42m -14m n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用图象法解下列二元一次方程组:

(1)

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.
(1)求证:BC是⊙O的切线;
(2)若AC=3,BC=4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1都是边长为1的等边三角形.

四边形ABCD是菱形吗?为什么?

如图2,将沿射线BD方向平移到的位置,则四边形是平行四边形吗?为什么?

移动过程中,四边形有可能是矩形吗?如果是,请求出点B移动的距离写出过程;如果不是,请说明理由3供操作时使用

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC的外心为O,内心为I,∠BOC=120°,∠BIC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是长方形纸袋,将纸袋沿EF折叠成图2,再沿BF折叠成图3,若DEF=α,用α表示图3中CFE的大小为 _________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=的图象交于A14),B3m)两点.

1)求反比例函数和一次函数的解析式;

2)求△AOB的面积.

查看答案和解析>>

同步练习册答案