【题目】如图,在四边形中,、、、分别是、、、的中点,要使四边形是菱形,则四边形只需要满足的一个条件是( )
A.B.四边形是菱形C.对角线D.
【答案】D
【解析】
利用三角形中位线定理可以证得四边形EFGH是平行四边形;然后由菱形的判定定理进行解答.
解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,
∴EF∥AD,HG∥AD,
∴EF∥HG;
同理,HE∥GF,
∴四边形EFGH是平行四边形;
A、若,得不到AD=BC,则GH≠GF,不能证明四边形EFGH是菱形,故本选项错误;
B、若四边形ABCD是菱形时,点EFGH四点共线;故本选项错误;
C、若对角线AC=BD时,四边形ABCD可能是等腰梯形,证明同A选项;故本选项错误;
D、当AD=BC时,GH=GF;所以平行四边形EFGH是菱形;故本选项正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.(当点P与点A重合时,y1,y2的值为0;当点P与点B重合时,y1的值为0,y2的值为6).
小智根据学习函数的经验,分别对函数y随自变量x的变化而变化的规律进行了探究.
下面是小智的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 1.21 | 2.09 | m | 2.99 | 2.82 | 0 |
y2/cm | 0 | 0.87 | 1.57 | 2.20 | 2.83 | 3.61 | 6 |
经测量m的值是 (保留一位小数).
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数yspan>1,y2的图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH;
①求证:△CBH∽△OBC;
②求OH+HC的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面内,C为线段AB外的一点,若以A,B,C为顶点的三角形为直角三角形,则称C为线段AB的直角点. 特别地,当该三角形为等腰直角三角形时,称C为线段AB的等腰直角点.
(1)如图1,在平面直角坐标系xOy中,点M的坐标为,在点P1,P2,P3中,线段OM的直角点是 ;
(2)在平面直角坐标系xOy中,点A,B的坐标分别为,,直线l的解析式为.
①如图2,C是直线l上的一个动点,若C是线段AB的直角点,求点C的坐标;
②如图3,P是直线l上的一个动点,将所有线段AP的等腰直角点称为直线l关于点A的伴随点.若⊙O的半径为r,且⊙O上恰有两个点为直线l关于点A的伴随点,直接写出r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=MF;
(2)若AE=2,求FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是二次函数y=ax2+bx+c的部分x,y的对应值:
x | … | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |||
y | … | m | ﹣1 | ﹣2 | ﹣1 | 2 | … |
(1)二次函数图象的开口向 ,顶点坐标是 ,m的值为 ;
(2)当x>0时,y的取值范围是 ;
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m﹣3=0.
(1)若该方程的一个根为2,求m的值及方程的另一个根;
(2)求证:不论m取何实数,该方程都有两个不相等的实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com