【题目】请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH;
①求证:△CBH∽△OBC;
②求OH+HC的最大值.
【答案】(1)见解析;(2) ①见解析;②5
【解析】
(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;
(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,
从而可证明△CBH∽△OBC;
②由△CBH∽△OBC可知:
,所以HB=,
由于BC=HC,所以OH+HC=
利用二次函数的性质即可求出OH+HC的最大值.
(1)由题意可知:∠CAB=∠GAF,
∵AB是⊙O的直径,
∴∠ACB=90°
∵OA=OC,
∴∠CAB=∠OCA,
∴∠OCA+∠OCB=90°,
∵∠GAF=∠GCE,
∴∠GCE+∠OCB=∠OCA+∠OCB=90°,
∵OC是⊙O的半径,
∴直线CG是⊙O的切线;
(2)①∵CB=CH,
∴∠CBH=∠CHB,
∵OB=OC,
∴∠CBH=∠OCB,
∴△CBH∽△OBC
②由△CBH∽△OBC可知:
∵AB=8,
∴BC2=HBOC=4HB,
∴HB=,
∴OH=OB-HB=
∵CB=CH,
∴OH+HC=
当∠BOC=90°,
此时BC=
∵∠BOC<90°,
∴0<BC<
令BC=x
∴OH+HC== =
当x=2时,
∴OH+HC可取得最大值,最大值为5
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∠ADE=∠B=,DE交AC于点E,若△DCE为直角三角形,则BD的值为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知钝角三角形ABC,将△ABC绕点A按逆时针方向旋转110°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A. 55°B. 65°C. 85°D. 75°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,曲线BC是反比例函数y=(4≤x≤6)的一部分,其中B(4,1﹣m),C(6,﹣m),抛物线y=﹣x2+2bx的顶点记作A.
(1)求k的值.
(2)判断点A是否可与点B重合;
(3)若抛物线与BC有交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线与直线交于A, B两点,其中点A在x轴上.
(1)用含有b的代数式表示c;
(2)① 若点B在第一象限,且,求抛物线的解析式;
② 若,结合函数图象,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+)2,我们来进行以下的探索:
设a+b=(m+n)2(其中a,b,m,n都是正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样就得出了把类似a+b的式子化为平方式的方法,请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都为正整数,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=x2+bx+c的图象交x轴于A、D两点并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).
(1)求二次函数的解析式;
(2)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积;
(3)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在2S△ADP=S△BCD?若存在请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com