精英家教网 > 初中数学 > 题目详情

【题目】请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH;

①求证:△CBH∽△OBC;

②求OH+HC的最大值.

【答案】(1)见解析;(2) ①见解析;②5

【解析】

(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;

(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,

从而可证明△CBH∽△OBC;

②由△CBH∽△OBC可知:

,所以HB=

由于BC=HC,所以OH+HC=

利用二次函数的性质即可求出OH+HC的最大值.

(1)由题意可知:∠CAB=∠GAF,

∵AB是⊙O的直径,

∴∠ACB=90°

∵OA=OC,

∴∠CAB=∠OCA,

∴∠OCA+∠OCB=90°,

∵∠GAF=∠GCE,

∴∠GCE+∠OCB=∠OCA+∠OCB=90°,

∵OC是⊙O的半径,

∴直线CG是⊙O的切线;

(2)①∵CB=CH,

∴∠CBH=∠CHB,

∵OB=OC,

∴∠CBH=∠OCB,

∴△CBH∽△OBC

②由△CBH∽△OBC可知:

∵AB=8,

∴BC2=HBOC=4HB,

∴HB=

∴OH=OB-HB=

∵CB=CH,

∴OH+HC=

当∠BOC=90°,

此时BC=

∵∠BOC<90°,

∴0<BC<

令BC=x

∴OH+HC== =

当x=2时,

∴OH+HC可取得最大值,最大值为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC5BC8,点D是边BC(不与BC重合)一动点,∠ADE=∠BDEAC于点E,若△DCE为直角三角形,则BD的值为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】射线QN与等边ABC的两边ABBC分别交于点MN,且ACQNAM=MB=2cmQM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知钝角三角形ABC,将ABC绕点A按逆时针方向旋转110°得到AB′C′,连接BB′,若AC′BB′,则∠CAB′的度数为( )

A. 55°B. 65°C. 85°D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,曲线BC是反比例函数y4≤x≤6)的一部分,其中B41m),C6,﹣m),抛物线y=﹣x2+2bx的顶点记作A

1)求k的值.

2)判断点A是否可与点B重合;

3)若抛物线与BC有交点,求b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线与直线交于A, B两点,其中点Ax轴上.

1)用含有b的代数式表示c

2)① 若点B在第一象限,且,求抛物线的解析式;

,结合函数图象,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,分别是的中点,要使四边形是菱形,则四边形只需要满足的一个条件是(

A.B.四边形是菱形C.对角线D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+2,我们来进行以下的探索:

a+b=(m+n2(其中abmn都是正整数),则有a+bm2+2n2+2mn,∴am2+2n2b2mn,这样就得出了把类似a+b的式子化为平方式的方法,请仿照上述方法探索并解决下列问题:

1)当abmn都为正整数时,若a+b=(m+n2,用含mn的式子分别表示ab,得a   b   

2)若a4=(mn2amn都为正整数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yx2+bx+c的图象交x轴于AD两点并经过B点,已知A点坐标是(20),B点的坐标是(86).

1)求二次函数的解析式;

2)该二次函数的对称轴交x轴于C点,连接BC,并延长BC交抛物线于E点,连接BDDE,求BDE的面积;

3)抛物线上有一个动点P,与AD两点构成ADP,是否存在2SADPSBCD?若存在请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案