【题目】阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+)2,我们来进行以下的探索:
设a+b=(m+n)2(其中a,b,m,n都是正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样就得出了把类似a+b的式子化为平方式的方法,请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a= ,b= .
(2)若a﹣4=(m﹣n)2且a,m,n都为正整数,求a的值.
【答案】(1)m2+5n2,2mn (2)21或9
【解析】
(1)利用完全平方公式展开得到(m+n)2=m2+5n2+2mn,而a,b,m,n都是正整数,则利用无理数和有理数的意义得到a=m2+5n2,b=2mn;
(2)利用(1)的方法得到﹣2mn=﹣4,a=m2+5n2,再利用m,n都为正整数得到m=1,n=2或m=2,n=1,然后计算对应的a的值即可.
解:(1)(m+n)2=m2+5n2+2mn,
∴a=m2+5n2,b=2mn;
故答案为m2+5n2,b=2mn;
(2)∵a﹣4=(m﹣n)2,
∴a﹣4=m2+5n2﹣2mn,
∴﹣2mn=﹣4,a=m2+5n2,
∵a,m,n都为正整数,
而mn=2,
∴当m=1时,n=2,此时a=12+5×22=21;
当m=2时,n=1,此时a=22+5×12=9;
综上所述,a的值为21或9.
科目:初中数学 来源: 题型:
【题目】如图①,AB是圆O的一条弦,点C是优弧 上一点.
(1)若∠ACB=45°,点P是O上一点(不与A.B重合),则∠APB=___;
(2)如图②,若点P是弦AB与所围成的弓形区域(不含弦AB与)内一点.求证:∠APB>∠ACB;
(3)请在图③中直接用阴影部分表示出在弦AB与所围成的弓形区域内满足
的点P所在的范围;
(4)在(1)的条件下,以PB为边,向右作等腰直角三角形PBQ,连结AQ,如图4,已知AB=2,
①当点Q在线段AB的延长线上时,线段AQ的长为____________
②线段AQ的最小值为_____________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE
(1)求证:直线CG为⊙O的切线;
(2)若点H为线段OB上一点,连接CH,满足CB=CH;
①求证:△CBH∽△OBC;
②求OH+HC的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为6,E,F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.
(1)求证:EF=MF;
(2)若AE=2,求FC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下表是二次函数y=ax2+bx+c的部分x,y的对应值:
x | … | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |||
y | … | m | ﹣1 | ﹣2 | ﹣1 | 2 | … |
(1)二次函数图象的开口向 ,顶点坐标是 ,m的值为 ;
(2)当x>0时,y的取值范围是 ;
(3)当抛物线y=ax2+bx+c的顶点在直线y=x+n的下方时,n的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,点A(﹣,0),B(,0),C(0,).D,E分别是线段AC和CB上的点,CD=CE.将△CDE绕点C逆时针旋转一个角度α.
(1)若0°<α<90°,在旋转过程中当点A,D,E在同一直线上时,连接AD,BE,如图2.求证:AD=BE,且AD⊥BE
(2)若0°<α<360°,D,E恰好是线段AC和CB上的中点,在旋转过程中,当DE∥AC时,求α的值及点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m﹣3=0.
(1)若该方程的一个根为2,求m的值及方程的另一个根;
(2)求证:不论m取何实数,该方程都有两个不相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年,6月7日为端午节.在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况.请根据小丽提供的信息,解答小华和小明提出的问题.
小丽 | 每个定价3元,每天能卖出500个.若这种粽子的售价每上涨0.1元,其销售量将减少10个 |
小华 | 照你说,若要实现每天800元的销售利润,那该如何定价?别忘了,根据物价局规定,售价不能超过进价的. |
小明 | 若按照物价局规定的最高售价,每天的利润会超过800元吗?请判断并说明理由 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为( )
A.B.2C.1D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com