精英家教网 > 初中数学 > 题目详情

【题目】一元二次方程 +2 x-6=0的根是(  )
A. = =
B. =0, =-2
C. = =-3
D. =- =3

【答案】C
【解析】解答: ∵a=1,b=2 ,c=-6 ∴x= =
= =-3
故选:C.
分析: 此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式≥0时,将a , b及c的值代入求根公式即可求出原方程的解.
【考点精析】通过灵活运用公式法,掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知凸四边形ABCD中,∠A=∠C=90°.

(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DEBF位置关系并证明.

(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DEBF位置关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=3,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2 , 当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解下列方程,其中应在方程的左右两边同时加上4的是(  )
A. -2x=5
B. +4x=5
C. +2x=5
D.2 -4x=5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图数轴上A、B、C三点对应的数分别是a、b、7,满足OA=3,BC=1,P为数轴上一动点,点PA出发,沿数轴正方向以每秒1.5个单位长度的速度匀速运动,点Q从点C出发在射线CA上向点A匀速运动,且P、Q两点同时出发.

(1)a、b的值

(2)P运动到线段OB的中点时,点Q运动的位置恰好是线段AB靠近点B的三等分点,求点Q的运动速度

(3)P、Q两点间的距离是6个单位长度时,求OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在长方形中,AB=4cm,BC=6cm,点中点,如果点在线段上以每秒2cm的速度由点向点运动,同时,点在线段上由点向点运动.设点运动时间为秒,若某一时刻BPECQP全等,求此时的值及点的运动速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.. 计算题:

(1)8﹣(﹣10)﹣|﹣2|

(2)2 ﹣3+(﹣3)﹣(+5

(3)﹣24×(﹣ +

(4)﹣49 ×10(简便运算)

(5)﹣ ÷(+

(6)3×(﹣38 )﹣4×(﹣38 )﹣38

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形纸片ABCD中,∠A=70°,∠B=80°,将纸片折叠,使C,D落在AB边上的C′,D′处,折痕为MN,则∠AMD′+∠BNC′=(
A.50°
B.60°
C.70°
D.80°

查看答案和解析>>

同步练习册答案