【题目】在Rt△ABC中,∠ABC=90°,∠C=30°,AC=8,BD为边AC上的中线,点E在边BC上,且BE:BC=3:8,点P在Rt△ABC的边上运动,当PD:AB=1:2时,EP的长为_____.
【答案】或或
【解析】
根据直角三角形的性质得到ABAC=4,BC=4,∠A=60°,过D作DF⊥AB于F,则DF∥BC,由直角三角形的性质得到AD=CD=BD,得到DF的长,当PD:AB=1:2时,点P在AC和BC上,然后分三种情况讨论:①当点P在BC上,②当P点在线段AD上时,③当P点在线段CD上时.
∵在Rt△ABC中,∠ABC=90°,∠C=30°,AC=8,∴ABAC=4,BC=4,∠A=60°.
∵PD:AB=1:2,∴PD=2.
过D作DF⊥AB于F,则DF∥BC.
∵BD为边AC上的中线,∴AD=CD=BD,∴AF=BF,∴DF=2.
∵点P在Rt△ABC的边上运动,PD=2<2,∴当PD:AB=1:2时,点P在AC和BC上.
①当点P在BC上.
∵PD=2AB,∴P为BC的中点,∴BPBC=2.
∵BE:BC=3:8,∴BE,∴EP=BP﹣BE;
②当P点在线段AD上时.
∵PD=2,AD=4,∴P为AD的中点,∴AP=2,过P作PG⊥BC于G,∴PG∥AB,∴△CPG∽△CAB,∴,∴,∴PG=3,CG=3,∴GE,∴PE;
③当P点在线段CD上时.
∵PD=2,CD=4,∴PC=2,过P作PH⊥BC于H,∴PH=1,CH,∴EH,∴PE.
综上所述:EP的长为或或.
故答案为:或或.
科目:初中数学 来源: 题型:
【题目】已知:∠BAC.
(1)如图,在平面内任取一点O;
(2)以点O为圆心,OA为半径作圆,交射线AB于点D,交射线AC于点E;
(3)连接DE,过点O作线段DE的垂线交⊙O于点P;
(4)连接AP,DP和PE.根据以上作图过程及所作图形,下列四个结论中:
①△ADE是⊙O的内接三角形; ② ;
③ DE=2PE; ④ AP平分∠BAC.
所有正确结论的序号是______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )
①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h; ⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时
A. 2个B. 3个C. 4个D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,二次函数与一次函数(a,b为常数,且).
(1)若y1,y2的图象都经过点(2,3),求y1,y2的表达式;
(2)当y2经过点时,y1也过A,B两点:
①求m的值;
②分别在y1,y2的图象上,实数t使得“当或时,”,试求t的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.
(1)求一次函数与反比例函数的解析式;
(2)记两函数图象的另一个交点为E,求△CDE的面积;
(3)直接写出不等式kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,以AB为直径的⊙O交BC于点D,点E是上一点,连接DE,AE,CE,已知CE=AC.
(1)判断直线CE与⊙O的位置关系,并证明;
(2)若AB=AC=4,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+4x+c(a≠0)经过点A(3,﹣4)和B(0,2).
(1)求抛物线的表达式和顶点坐标;
(2)将抛物线在A、B之间的部分记为图象M(含A、B两点).将图象M沿直线x=3翻折,得到图象N.若过点C(9,4)的直线y=kx+b与图象M、图象N都相交,且只有两个交点,求b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.
①求证:CE∥BF;
②若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的部分图象如图,则下列说法错误的是( )
A. 对称轴是直线x=﹣1
B. abc<0
C. b2﹣4ac>0
D. 方程ax2+bx+c=0的根是x1=﹣3和x2=1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com