精英家教网 > 初中数学 > 题目详情

【题目】跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB6米,到地面的距离AOBD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2bx0.9.

1)求该抛物线的解析式;

2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;

3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t, 绳子甩到最高处时超过她的头顶,请结合图像,写出t的取值范围 .

【答案】1)抛物线的解析式是y=﹣0.1x2+0.6x+0.9;2)小华的身高是1.8;31t5

【解析】

试题分析:1)已知抛物线解析式,求其中的待定系数,选定抛物线上两点E1,1.4,B6,0.9)坐标代入即可;

2)小华站在OD之间,且离点O的距离为3,OF=3,求当x=3,函数值;

3)实质上就是求y=1.4,对应的x的两个值,就是t的取值范围.

试题解析:1)由题意得点E1,1.4,B6,0.9,代入y=ax2+bx+0.9,

解得,

所求的抛物线的解析式是y=﹣0.1x2+0.6x+0.9;

2)把x=3代入y=﹣0.1x2+0.6x+0.9

y=﹣0.1×32+0.6×3+0.9=1.8

小华的身高是1.8;

3)当y=1.4,﹣0.1x2+0.6x+0.9=1.4,

解得x1=1,x2=5,

∴1t5

考点:二次函数的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。

(1)该中学库存多少套桌椅?

(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD,AB=6,BC=8,FBC边上的一个动点,把△ABF沿AF折叠。当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB上建一个水泵站,向两村供水,用以解决村民生活用水问题。(保留作图痕迹)

①如果要求水泵站到甲、乙两村庄的距离相等,水泵站M应建在河岸AB上的何处?

②如果要求建造水泵站,供水管道使用建材最省,水泵站N又应建在河岸AB上的何处?

2)如图,作出△ABC关于直线l的对称图形;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):

方案①:所有评委所给分的平均数;

方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数;

方案③:所有评委所给分的中位数;

方案④:所有评委所给分的众数。

为了探究上述方案的合理性,先地某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图。

1)分别按上述4个方案计算这个同学演讲的最后得分;

2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分,并说明你的理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=30cmBC=40cm.点P从点A出发,以5cm/s的速度沿AC向终点C匀速移动.过点PPQAB,垂足为点Q,以PQ为边作正方形PQMN,点MAB边上,连接CN.设点P移动的时间为ts).

1PQ=______;(用含t的代数式表示)

2)当点N分别满足下列条件时,求出相应的t的值;①点CNM在同一条直线上;②点N落在BC边上;

3)当△PCN为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是菱形ABCD对角线ACBD的交点,CD=5cm,OD=3cm;过点CCEDB,过点BBEAC,CEBE相交于点E.

(1)求OC的长;

(2)求四边形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.

(1)该玩具销售单价定为多少元时,商场能获得12000元的销售利润?

(2)该玩具销售单价定为多少元时,商场获得的销售利润最大?最大利润是多少?

(3)若玩具厂规定该品牌玩具销售单价不低于46元,且商场要完成不少于500件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,B,C两点把线段AD分成2:5:3三部分,MAD的中点,BM=6cm,求CMAD的长.

查看答案和解析>>

同步练习册答案