【题目】阅读材料:求1+2+22+23+24+…+220的值.
解:设S=1+2+22+23+24+…+220,将等式两边同时乘以2得:2S=2+22+23+24+25+…+221
将下式减去上式得2S﹣S=221﹣1
即S=221﹣1
即1+2+22+23+24+…+220=221﹣1
请你仿照此法计算:
(1)1+2+22+23+24+…+22016
(2)1+2+22+23+24+…+2n(其中n为正整数)
(3)1+5+52+53+54+…+5n(其中n为正整数)
【答案】(1)22017﹣1;(2)2n+1﹣1;(3).
【解析】
(1)设原式=S,两边乘以2变形得到关系式,两式相减即可求出S;
(2)设原式=S,两边乘以2变形得到关系式,两式相减即可求出S;
(3)设原式=S,两边乘以5变形得到关系式,两式相减即可求出S.
解:(1)设S=1+2+22+23+24+…+22016,
两边乘以2得:2S=2+22+23+24+…+22027,
下式减去上式得:S=22017﹣1;
(2)设S=1+2+22+23+24+…+2n
两边乘以2得:2S=2+22+23+24+…+2n+1,
下式减去上式得:S=2n+1﹣1;
(3)设S=1+5+52+53+54+…+5n,
两边乘以5得:5S=5+52+53+54+…+5n+1,
下式减去上式得:4S=5n+1﹣1,即S=,
则1+5+52+53+54+…+5n=.
科目:初中数学 来源: 题型:
【题目】直线AB:y=﹣x+b分别与x,y轴交于A(6,0)、B 两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1.
(1)求点B的坐标.
(2)求直线BC的解析式.
(3)直线 EF 的解析式为y=x,直线EF交AB于点E,交BC于点 F,求证:S△EBO=S△FBO.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若,是.
理由:如图,过点作,
则.(依据)
因为,
所以,
所以.
所以.
(1)上述证明过程中的依据是指 .
(2)若将点移至图2所示的位置,,此时之间有什么关系?请说明理由.
(3)在图中,,与又有何关系?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30o,小丽向前走了10米到达点E,此时的仰角为60o,求旗杆的高度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B是两座现代化城市,C是一个古城遗址,C城在A城的北偏东30°,在B城的北偏西45°,且C城与A城相距120千米,B城在A城的正东方向,以C为圆心,以60千米为半径的圆形区域内有古迹和地下文物,现要在A、B两城市修建一条笔直的高速公路.
(1)请你计算公路的长度(保留根号);
(2)请你分析这条公路有没有可能对文物古迹造成损毁,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,BC=10.
(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度数;
(2)若EF=4,求△MEF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,AB=AC=5,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)求四边形AQMP的周长;
(2)M位于BC的什么位置时,四边形AQMP为菱形?指出点M的位置,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com