精英家教网 > 初中数学 > 题目详情

【题目】如图1,ABC是等腰直角三角形,BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BDCF成立.

(1)当ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;

(2)当ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.

求证:BDCF;

当AB=2,AD=时,求线段DH的长.

【答案】(1)BD=CF;(2)证明见解析;

【解析】分析:(1)根据旋转变换的性质和全等三角形的判定定理证明CAF≌△BAD,证明结论;

(2)根据全等三角形的性质、垂直的定义证明即可;

连接DF,延长AB交DF于M,根据题意和等腰直角三角形的性质求出DM、BM的长,根据勾股定理求出BD的长,根据相似三角形的性质列出比例式,计算即可得到答案.

(1)BD=CF.

理由如下:由题意得,CAF=BAD=θ,在CAF和BAD中,CA=BA,CAF=BAD,FA=DACAF≌△BAD,BD=CF;

(2)由(1)得CAF≌△BAD,∴∠CFA=BDA,∵∠FNH=DNA,DNA+NAD=90°,∴∠CFA+FNH=90°,∴∠FHN=90°,即BDCF;

连接DF,延长AB交DF于M,四边形ADEF是正方形,AD=,AB=2,AM=DM=3,BM=AM﹣AB=1,ABC绕点A逆时针旋转45°,∴∠BAD=45°,AMDF,DB==∵∠MAD=MDA=45°,∴∠AMD=90°,又DHF=90°,MDB=HDF,DMB∽△DHF,,即,解得,DH=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】圆锥的底面半径为5,高为12,则它的侧面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.

(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;

(2)如图2,在ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;

(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使点C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画一种情形即可);

(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,AMC,MND和NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂中发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图(如图所示).已知A、B两组发言人数直方图高度比为1∶5,请结合图中相关的数据回答下列问题:

发言次数n

A

0≤n<5

B

5≤n<10

C

10≤n<15

D

15≤n<20

E

20≤n<25

F

25≤n<30


(1)A组的人数是多少?本次调查的样本容量是多少?
(2)求出C组的人数,并补全直方图;
(3)该校七年级共有250人.请估计全年级每天在课堂中发言次数不少于15次的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.
(1)求取出纸币的总额是30元的概率;
(2)求取出纸币的总额可购买一件51元的商品的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O1、⊙O2的半径分别为3cm、5cm,且它们的圆心距为8cm,则⊙O1与⊙O2的位置关系是(
A.外切
B.相交
C.内切
D.内含

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批发商欲将一批水果由A地运往B地,汽车货运公司和铁路货运公司均开办此项运输业务,设运输过程中的损耗均为200元每小时,两货运公司的收费项:目及收费标准如下表所示:

运输工具

途中平均速度
(千米/时)

运费
(元/千米)

装卸费用
(元)

汽车

80

20

900

火车

100

15

2000


(1)设该两地间的距离为x千米,若汽车货运公司和铁路货运公司的总费用分别为y1(元)和y2(元),则y1=元,y2=元;(用含x的代数式表示y1和y2)
(2)如果汽车的总费用比火车的总费用多ll00元,求A,B两地的距离为多少千米?
(3)若两地间距离为200千米,且火车、汽车在路上耽误的时间分别为2小时和3.1小时,若你是经理,选择哪种运输方式更合算些?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的 ,且数据有160个,则中间一组的频数为(
A.32
B.0.2
C.40
D.0.25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(3-k)x-2k2+18

(1)k为何值时,函数为一次函数;

(2)k为何值时,它的图像经过原点。

查看答案和解析>>

同步练习册答案