【题目】阅读下列材料,解答问题.
饮水问题是关系到学生身心健康的重要生活环节,东坡中学共有教学班24个,平均每班有学生50人,经估算,学生一年在校时间约为240天(除去各种节假日),春、夏、秋、冬季各60天.原来,学生饮水一般都是购纯净水(其他碳酸饮料或果汁价格更高),纯净水零售价为1.5元/瓶,每个学生春、秋、冬季平均每天买1瓶纯净水,夏季平均每天要买2瓶纯净水,学校为了减轻学生消费负担,要求每个班自行购买1台冷热饮水机,经调查,购买一台功率为500 W的冷热饮水机约为150元,纯净水每桶6元,每班春、秋两季,平均每1.5天购买4桶,夏季平均每天购买5桶,冬季平均每天购买1桶,饮水机每天开10小时,当地民用电价为0.50元/度.
问题:
(1)在未购买饮水机之前,全年平均每个学生要花费多少钱来购买纯净水饮用?
(2)在购买饮水机解决学生饮水问题后,每班当年共要花费多少元?
(3)这项便利学生的措施实施后,东坡中学当年全体学生共节约多少钱?
【答案】(1)450元;(2)4830元;(3)424080元.
【解析】
(1)通过每个学生每天的用水量计算出每个季节的用水量,从而计算出全年用水量;
(2)购买饮水机解决学生饮水问题后,每班学生全年的花费为“水费+电费+饮水机费用”;
(3)原水费-现在水费=能节约的水费.
(1)因为每个学生春、秋、冬季每天购买1瓶矿泉水,夏季每天购买2瓶,
所以一个学生在春、秋、冬季共要购买180瓶矿泉水,夏季要购买120瓶矿泉水,
所以一年中一个学生共要购买300瓶矿泉水,所以一个学生全年共花费1.5×300=450(元).
(2)购买饮水机后,一年每个班所需纯净水的桶数为:春秋两季,每1.5天4桶,则120天共要4×=320(桶).
夏季每天5桶,共要60×5=300(桶),
冬季每天1桶,共60桶,
所以全年共要纯净水(320+300+60)=680(桶),
故购买矿泉水费用为680×6=4 080(元),
使用电费为240×10××0.5=600(元),
故每班学生全年共花费为4 080+600+150=4 830(元).
(3)因为一个学生节省450-=353.4(元),
所以全体学生共节省353.4×24×50=424 080(元).
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AD是弦,∠A=22.5°,延长AB到点C,使得∠ACD=45°.
(1)求证:CD是⊙O的切线.
(2)若AB=2 ,求OC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若△ABC的边长为4,求EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点F.请你添加一个适当的条件,使△AEF≌△CEB.添加的条件是____________(写出一个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从图 2 开始,每一个图形都是由基本图形“△”通过平移或翻折拼成的:
观察发现,图 10 中共有_________________个小三角形,图 n 共有____________个小三角形,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D为BC的中点,直角∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于点B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,若tan∠ABO= ,OB=4,OE=2,点D的坐标为(6,m).
(1)求直线AB和反比例函数的解析式;
(2)求△OCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com