【题目】如图,在△ABC中,∠ACB=90°,∠B=4∠BAC.延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB于点E,交AC于点F.
(1)依题意补全图形;
(2)求证:∠B=2∠BAD;
(3)用等式表示线段EA,EB和DB之间的数量关系,并证明.
【答案】(1)见解析;(2)见解析;(3)EA=EB+DB,见解析.
【解析】
(1)根据要求作图即可;
(2)由∠ACB=90°,CD=CB知AD=AB.据此得∠BAD=2∠BAC.结合∠B=4∠BAC可得答案;
(3)在EA上截取EG=EB,连接DG.由DE⊥AB知DG=DB.从而得∠DGB=∠B.结合∠B=2∠BAD知∠DGB=2∠BAD.由∠DGB=∠BAD+∠ADG知∠BAD=∠ADG.从而得GA=GD、GA=DB.继而可得答案.
(1)补全图形如图:
(2)证明:∵∠ACB=90°,CD=CB,
∴AD=AB.
∴∠BAD=2∠BAC.
∵∠B=4∠BAC,
∴∠B=2∠BAD.
(3)EA=EB+DB,
证明:在EA上截取EG=EB,连接DG.
∵DE⊥AB,
∴DG=DB.
∴∠DGB=∠B.
∵∠B=2∠BAD,
∴∠DGB=2∠BAD.
∵∠DGB=∠BAD+∠ADG,
∴∠BAD=∠ADG.
∴GA=GD.
∴GA=DB.
∴EA=EG+AG=EB+DB.
科目:初中数学 来源: 题型:
【题目】图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框
上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道 ,两扇活页门的宽 ,点固定,当点在上左右运动时,与的长度不变(所有结果保留小数点后一位).
(1)若,求的长;
(2)当点从点向右运动60时,求点在此过程中运动的路径长.
(参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:
(1)本次调查属于 调查,样本容量是 ;
(2)请补全频数分布直方图中空缺的部分;
(3)求这50名学生每周课外体育活动时间的平均数;
(4)估计全校学生每周课外体育活动时间不少于6小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是⊙O内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O切线交AB延长线于点D.
(1)求证:CD=CB;(2)如果⊙O的半径为,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图像大致为 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.
(1)求证:DH是圆O的切线;
(2)若A为EH的中点,求的值;
(3)若EA=EF=1,求圆O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com