【题目】在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
科目:初中数学 来源: 题型:
【题目】如图,Rt△ADB中,∠ADB=90°,∠DAB=30°,⊙O为△ADB的外接圆,DH⊥AB于点H,现将△AHD沿AD翻折得到△AED,AE交⊙O于点C,连接OC交AD于点G.
(1)求证:DE是⊙O的切线;
(2)若AB=10,求线段OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠B=4∠BAC.延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB于点E,交AC于点F.
(1)依题意补全图形;
(2)求证:∠B=2∠BAD;
(3)用等式表示线段EA,EB和DB之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△CDE为等腰直角三角形,∠BAC=∠DEC=90°,连接AD,取AD中点P,连接BP,并延长到点M,使BP=PM,连接AM、EM、AE,将△CDE绕点C顺时针旋转.
(1)如图①,当点D在BC上,E在AC上时,AE与AM的数量关系是______,∠MAE=______;
(2)将△CDE绕点C顺时针旋转到如图②所示的位置,(1)中的结论是否仍然成立,若成立,请给出证明,若不成立,请说明理由;
(3)若CD=BC,将△CDE由图①位置绕点C顺时针旋转α(0°<α<360°),当ME=CD时,请直接写出α的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,下图是甲、乙两车间的距离(千米)与乙车出发(时)的函数的部分图像
(1)A、B两地的距离是 千米,甲车出发 小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中,与的函数关系式及的取值范围,并在图中补全函数图像;
(3)乙车出发多长时间,两车相距150千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的方程x2+(m-2)x+m-3=0.
(1)求证:无论m取什么实数,这个方程总有两个不相等的实数根;
(2)若这个方程的两个实数根x1,x2满足2x1+x2=m+1,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com