精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是⊙O内接三角形,∠ACB=45°,∠AOC=150°,过点C作⊙O切线交AB延长线于点D.

(1)求证:CD=CB;(2)如果⊙O的半径为,求AC的长.

【答案】(1)证明见解析;(2)+1.

【解析】

(1)首先连接OB,则∠AOB=2∠ACB=2×45°=90°,由∠AOC=150°,易得△OBC是等边三角形,又由过点C作⊙O的切线交AB的延长线于点D,易求得∠CBD=∠D=75°,继而证得结论;

(2)由⊙O的半径为,可求得AB=2,CD=BC=OC=,易证得△DBC∽△DCA,然后由相似三角形的对应边成比例,求得答案.

(1)连接OB,则∠AOB=2∠ACB=2×45°=90°,∵OA=OB,∴∠OAB=OBA=45°,

∵∠AOC=150°,OA=OC,∴∠OCA=∠OAC=15°,∴∠OCB=∠OCA+∠ACB=60°,

∴△OBC是等边三角形,∴∠BOC=∠OBC=60°,∴∠CBD=180°﹣∠OBA﹣∠OBC=75°,

∵CD是⊙O的切线,∴OC⊥CD,

∴∠D=360°﹣∠OBD﹣∠BOC﹣∠OCD=360°﹣(60°+75°)﹣60°﹣90°=75°,

∴∠CBD=∠D,∴CB=CD;

(2)在Rt△AOB中,AB=OA=×=2,∵CD是⊙O的切线,∴∠DCB=∠CAD,

∵∠D是公共角,∴△DBC∽△DCA,∴,∴CD2=ADBD=BD(BD+AB),

∵CD=BC=OC=,∴2=BD(2+BD),解得:BD=﹣1,∴AC=AD=AB+BD=+1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EFBD相交于点H,连接CF.

求证:△DAE≌△DCF.

求证:AH2=AE2+HF2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班组织班级联欢会,最后进入抽奖环节,每名同学都有一次抽奖机会,抽奖方案如下:将一副扑克牌中点数为“2”,“3”,“3”, “5”,“6”的四张牌背面朝上洗匀,先从中抽出1张牌,再从余下的4张牌中抽出1张牌,记录两张牌点数后放回,完成一次抽奖,记每次抽出两张牌点数之差为x,按表格要求确定奖项.

奖项

一等奖

二等奖

三等奖

|x|

|x|=4

|x|=3

1|x|<3

(1)用列表或画树状图的方法求出甲同学获得一等奖的概率;

(2)求出每次抽奖获奖的概率?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,EAC边上的一点,且AE=AB∠BAC=2∠CBE,以AB为直径作⊙OAC于点D,交BE于点F

1)求证:BC⊙O的切线;

2)若AB=8BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“文明礼仪”在人们长期生活和交往中逐渐形成,并以风俗、习惯等方式固定下来的.我们作为具有五千年文明史的“礼仪之邦”,更应该用文明的行为举止, 合理的礼仪来待人接物.为促进学生弘扬民族文化、展示民族精神,某学校开展“文明礼仪”演讲比赛,八年级(1)班,八年级(2)班各派出 5 名选手参加比赛,成绩如图所示.

1)根据图,完成表格:

平均数(分)

中位数(分)

极差(分)

方差

八年级(1)班

75

25

八年级(2)班

75

70

160

2)结合两班选手成绩的平均分和方差,分析两个班级参加比赛选手的成绩;

3)如果在每班参加比赛的选手中分别选出3人参加决赛,从平均分看,你认为哪个班的实力更强一些? 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

如图1,一次函数的图象与x轴和y轴分别交于AB两点,再将△AOB沿直线CD对折,使点A与点B重合.直线CD x轴交于点C,与AB交于点D

1)求点A和点B的坐标

2)求线段OC的长度

3)如图 2,直线 ly=mx+n,经过点 A,且平行于直线 CD,已知直线 CD 的函数关系式为 ,求 mn 的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是(  )

A. (2017,0) B. (2017,

C. (2018, D. (2018,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△CBD中,CDBDCDBDBE平分∠CBACD于点FCEBE垂足是ECE的延长线与BD交于点A

1)求证:BFAC

2)求证:BEAC的中垂线;

3)若BD2,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点E为正方形ABCD的边AB上一点,EFEC,且EF=EC,连接AF.过点FFN垂直于BA的延长线于点N

1)求∠EAF的度数;

2)如图2,连接FCBDM,交ADN.猜想BDAFDM三条线段的等量关系,并证明.

查看答案和解析>>

同步练习册答案