精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为(  )

A. 2 B. ﹣2 C. 4 D. ﹣4

【答案】D

【解析】

首先过点AAC⊥x轴于C,过点BBD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值

解:过点AAC⊥x轴于C,过点BBD⊥x轴于D,


∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=
=
= ,即
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商店经销的一种进价为每件元的运动休闲杉热销.据市场调查分析,若每件按元销售出件;销售单价每涨价元,月销售量就减少件.针对这种运动休闲杉的销售情况,请解答以下问题:

设销售单价为每件元,月销售利润为元,求之间的函数关系式(不必写出的取值范围);

商店想使月销售利润达到元,并使销售量尽量大,请问该休闲杉的销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=2.点PAC上的一个动点,过点PMNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),AMN的面积为y.

建立模型:(1)yx的函数关系式为:

解决问题:(2)为进一步研究yx变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:

x

0

1

2

3

4

y

0

   

   

   

0

(3)观察所画的图象,写出该函数的两条性质:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a≠0)是由抛物线y=﹣x2+x+2先作关于y轴的轴对称图形,再将所得到的图象向下平移3个单位长度得到的,点Q1(﹣2.25,q1),Q2(1.5,q2)都在抛物线y=ax2+bx+c(a≠0)上,则q1,q2的大小关系是(  )

A. q1>q2 B. q1<q2 C. q1=q2 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年4月23日是 “世界读书日”,宜宾市某中学举行“多读书,读好书”活动,对学生的课外读书时间进行了随机问卷调查,用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题:

(1)本次接受问卷调查的学生共有________人,在扇形统计图中“D”选项所占的百分比为________

(2)扇形统计图中,“B”选项所对应扇形圆心角为________度;

(3)请补全条形统计图;

(4)若该校共有1200名学生,则该校学生课外读书时间在“A”选项的约有_____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆C过原点并与坐标轴分别交于A、D两点,已知点B为圆C圆周上一动点,且∠ABO=30°,点D的坐标为(0,2).

(1)直接写出圆心 C 的坐标;

(2)当△BOD为等边三角形时,求点B的坐标;

(3)若以点B为圆心、r为半径作圆B,当圆B与两个坐标轴同时相切时,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】泰勒斯是古希腊哲学家,相传他利用三角形全等的方法求出岸上一点到海中一艘船的距离.如图,B是观察点,船AB的正前方,过BAB的垂线,在垂线上截取任意长BDCBD的中点,观察者从点D沿垂直于BDDE方向走,直到点E、船A和点C在一条直线上,那么△ABC≌△EDC,从而量出DE的距离即为船离岸的距离AB,这里判定△ABC≌△EDC的方法是(  )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、C、D都在O上,过C点作CABD,交OD的延长线于点A,连接BC,B=A=30,BD=

(1)求证:AC是O的切线。

(2)求由线段AC、AD与弧CD所围成的阴影部分的面积(结果保留π)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知半径为2⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为CPC⊙O交于点D,连接PAPB,设PC的长为x(2x4

1】当时,求弦PAPB的长度;

2】当x为何值时,PD×CD的值最大?最大值是多少?

查看答案和解析>>

同步练习册答案