精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE,设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C,F,D的抛物线为y=ax2+bx+c.

(1)求点D的坐标(用含m的式子表示);
(2)若点G的坐标为(0,﹣3),求该抛物线的解析式;
(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出点P的坐标;若不存在,说明理由.

【答案】
(1)

解:根据折叠的性质得:CF=AB=m,DF=DB,∠DFC=∠DBA=90°,CE=AE,∠CED=∠AED,

设CD=x,则DF=DB=2m﹣x,

根据勾股定理得:CF2+DF2=CD2

即m2+(2m﹣x)2=x2

解得:x=m,

∴点D的坐标为:(m,m);


(2)

解:∵四边形OABC是矩形,

∴OA=2m,OA∥BC,

∴∠CDE=∠AED,

∴∠CDE=∠CED,

∴CE=CD=m,

∴AE=CE=m,

∴OE=OA﹣AE=m,

∵OA∥BC,

∴△OEG∽△CDG,

解得:m=2,

∴C(0,2),D(,2),

作FH⊥CD于H,如图1所示:

则∠FHC=90°=∠DFC,

∵∠FCH=∠FCD,

∴△FCH∽△DCF,

==

∴FH=,CH=+2=

∴F(),

把点C(0,2),D(,2),F()代入y=ax2+bx+c得:

解得:a=,b=,c=2,

∴抛物线的解析式为:y=x2+x+2;


(3)

解:存在;点P的坐标为:(),或();理由如下:

如图2所示:

∵CD=CE,CE=EA,

∴CD=EA,

∵线段CD的中点为M,∠DFC=90°,

∴MF=CD=EA,点P与点F重合,

∴点P的坐标为:();

由抛物线的对称性得另一点P的坐标为();

∴在线段CD上方的抛物线上存在点P,使PM=EA,点P的坐标为:(),或().


【解析】(1)由折叠的性质得出CF=AB=m,DF=DB,∠DFC=∠DBA=90°,CE=AE,设CD=x,则DF=DB=2m﹣x,由勾股定理得出方程,解方程即可得出结果;
(2)证明△OEG∽△CDG,得出比例式,求出m的值,得出C、D的坐标,作FH⊥CD于H,证明△FCH∽△DCF,得出比例式求出F的坐标,用待定系数法即可求出抛物线的解析式;
(3)由直角三角形斜边上的中线性质得出MF=CD=EA,点P与点F重合,得出点P的坐标;由抛物线的对称性得另一点P的坐标即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,Rt△OA1C1 , Rt△OA2C2 , Rt△OA3C3 , Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4…=30°.若点A1的坐标为(3,0),OA1=OC2 , OA2=OC3 , OA3=OC4…,则依次规律,点A2016的纵坐标为(  )

A.0
B.﹣3×( 2015
C.(2 2016
D.3×( 2015

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向ABCD内部投掷飞镖(每次均落在ABCD内,且落在ABCD内任何一点的机会均等)恰好落在阴影区域的概率为(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径, , 连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.

(1)若OA=CD=,求阴影部分的面积;
(2)求证:DE=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人制作某种机械零件,已知甲每小时比乙多做3个,甲做96个所用的时间与乙做84个所用的时间相等,求甲、乙两人每小时各做多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线y=x+m与抛物线x2=4y相切,且与x轴的交点为M,点N(﹣1,0).若动点P与两定点M,N所构成三角形的周长为6.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ) 设斜率为 的直线l交曲线C于A,B两点,当PN⊥MN时,证明:∠APN=∠BPN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数 ,则f(x)在[0,k]的最大值h(k)=(
A.2ln2﹣2﹣(ln2)3
B.﹣1
C.2ln2﹣2﹣(ln2)2k
D.(k﹣1)ek﹣k3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.

(Ⅰ)证明:AD⊥PB;
(Ⅱ)求三棱锥C﹣PAB的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过点A(3,0),B(2,﹣3),C(0,﹣3)
(1)求抛物线的表达式;
(2)设点D是抛物线上一点,且点D的横坐标为﹣2,求△AOD的面积.

查看答案和解析>>

同步练习册答案