【题目】如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E
(1)求证:△AMN是等腰三角形;
(2)求BMAN的最大值;
(3)当M为BC中点时,求ME的长.
【答案】(1)证明详见解析;(2) ;(3) .
【解析】
试题分析:(1)根据矩形的性质和平行线的性质证明即可;
(2)作NH⊥AM于H,证明△NAH∽△AMB,根据相似三角形的性质得到ANBM=,根据勾股定理计算即可;
(3)由(2)的结论,结合相似三角形的性质求出CE,根据勾股定理计算即可.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠NAM=∠BMA,又∠AMN=∠AMB,
∴∠AMN=∠NAM,
∴AN=MN,即△AMN是等腰三角形;
(2)如图,作NH⊥AM于H,
∵AN=MN,NH⊥AM,
∴AH=AM,
∵∠NHA=∠ABM=90°,∠AMN=∠AMB,
∴△NAH∽△AMB,
∴,
∴ANBM=AHAM=,
在Rt△AMB中,,
∵BM≤2,
∴9+≤13,
∴ANBM≤,
即当BM=2时,BMAN的最大值为;
(3)解:∵M为BC中点,
∴BM=CM=BC=1,
由(2)得,ANBM=,
∵==10,
∴AN=5,
∴DN=5﹣2=3,
设DE=x,则CE=3﹣x,
∵AN∥BC,
∴,即,
解得,x=,即CE=,
∴CE=,
∴ME==.
科目:初中数学 来源: 题型:
【题目】根据下列条件,只能画出唯一的△ABC的是( )
A. AB=3 BC=4 B. AB=4 BC=3 ∠A=30°
C. ∠A=60°∠B=45° AB=4 D. ∠C=60°AB=5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y1=x2+bx+c的顶点坐标为(﹣1,1),直线1的解析式为y2=2mx+3m2+4nm+4n2,且l与x轴、y轴分别交于A、B两点.
(1)求b、c的值;
(2)若函数y1+y2的图象与x轴始终有公共点,求直线l的解析式;
(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB为等腰角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)36×( ﹣ + )
(2) +(﹣1)2007+ ﹣|﹣5|
(3)﹣14+3×(﹣2)4﹣32
(4)﹣ ×[﹣32×(﹣ )2﹣ ].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC是等边三角形,E,D,G分别在AB,BC,AC边上,且AE=BD=CG.连接AD,BG,CE,相交于F,M,N.
(1)求证:AD=CE;
(2)求∠DFC的度数;
(3)试判断△FMN的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在七年级数学联欢会上,教师出示了10张数学答题卡.答题卡背面的图案各不相同:当答题卡正面是正数时,背面是一面旗;当答题卡正面是负数时,背面是一朵花.这10张答题卡如下所示: ①(﹣4)×(﹣2)
②﹣2.8+(+1.9)
③0+(﹣12.9)
④﹣(﹣2)2
⑤﹣0.5÷(﹣2)
⑥|﹣3|﹣(﹣2)
⑦(﹣ )2×
⑧
⑨4÷(19﹣59)
⑩a2+1
请你通过观察说出:答题卡后有几面旗?几朵花?并写出它们的序号.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,AB=AC,以B为圆心,BC长为半径画弧,交AC于点D,交AB于点E.
(1)求∠ABD的度数;
(2)当BC=时,求线段AE,AD与围成阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1); (2) (-2x)2+(6x3-12x4)÷3x2;
(3) (x+1)2+(2+x)(2-x) ; (4)x(4x+3y)-(2x+y)(2x-y)
(5)(运用公式进行简便计算)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com