【题目】如图,在平面直角坐标系中,点是坐标原点,抛物线与轴相交于、两点,与轴交于点,;
(1)如图1,求抛物线的解析式;
(2)如图2,点在第四象限的抛物线上,连接交轴于点,轴于点,的延长线交直线于点,求证:;
(3)如图3,在(2)的条件下,点在上,连接、,,,求的坐标.
【答案】(1);(2)见解析;(3)(5,)
【解析】
(1)设点A的坐标为(a,0),从而求出点B的坐标,然后代入解析式即可求出结论;
(2)先求出点A、B、C的坐标,设点R的坐标为(m,),用含m的式子表示出OE、RE,然后根据相似三角形的判定定理证出△OAD∽△ERD,△BOC∽△GEC,最后列出比例式即可求出DE和RG,从而证出结论;
(3)过点N作NH⊥CE于E,作∠DFE=45°,用含m的式子表示出DE、EF、DF,设HN=n,,易知CH=n,OH=OC-CH=4-n,根据即可求出m与n的关系,然后根据锐角三角函数的性质可证∠HEN=∠FRD,再根据相似三角形的判定定理证出△RFD∽△DFG,列出比例式即可求出m的值,从而求出结论.
解:(1)设点A的坐标为(a,0),a<0
∵
∴点B的坐标为(-2a,0)
将点A、B的坐标代入中,得
解得:或(不符合前提条件,舍去)
∴抛物线的解析式为;
(2)由(1)得点A(-2,0),点B(4,0),点C(0,4)
设点R的坐标为(m,),其中m>0
∴OA=2,OB=4,OC=4,OE=,RE=m
∵轴
∴RE∥x轴
∴△OAD∽△ERD,△BOC∽△GEC
∴,
即,
解得: DE,RG
∴DE=RG;
(3)过点N作NH⊥CE于E,作∠DFE=45°
∴DE=EF=,DF==
设HN=n,(n>0),易知CH=n,OH=OC-CH=4-n,
由(2)知OE=,DE=RG,RE= m,FR=RE-EF=,FG=FR+RG=m
∵
∴EH2+HN2=EN2=DR2=DE2+RE2
∴(+4-n)2+n 2 =()2+m2
解得:n=或n=m(由图可知:R的横坐标m>点B的横坐标4>n,故舍去)
∴HN=,EH=m
∴tan∠HEN=,tan∠FRD=
∴∠HEN=∠FRD
∵,∠DFE=45°
∴∠FRD+∠DGE=45°,∠DGE+∠FDG=45°
∴∠FRD=∠FDG
∵∠RFD=∠DFG
∴△RFD∽△DFG
∴
即
解得:m1=2,m2=5
当m=2时,点R的纵坐标为=4,(点R在第四象限,故舍去)
当m=5时,点R的纵坐标为=,
∴点R的坐标为(5,)
科目:初中数学 来源: 题型:
【题目】为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.
(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;
(2)求出抽到B队和C队参加交流活动的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.
⑴求v关于t的函数表达式;
⑵方方上午8点驾驶小汽车从A出发.
①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.
②方方能否在当天11点30分前到达B地?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△OA1B1,△B1A2B2是等边三角形,点A1,A2在函数的图象上,点B1,B2在x轴的正半轴上,分别求△OA1B1,△B1A2B2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数,的图象和性质进行了探究过程如下,请补充完成:
(1)函数的自变量的取值范围是__________________;
(2)下表是与的几组对应值.请直接写出,的值:______________;________.
… | 0 | 2 | 3 | 4 | … | |||||||
… |
| -3 | 5 | 3 | … |
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)通过观察函数的图象,小明发现该函数图象与反比例函数的图象形状相同,是中心对称图形,且点和是一组对称点,则其对称中心的坐标为________.
(5)请写出一条该函数的性质:___________________.
(6)当时,关于的方程有实数解,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.
(1)求抛物线的解析式;
(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.
(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形中,,为中点,将绕点旋转得到.一动点从出发,以每秒1的速度沿的路线匀速运动,过点作直线,使.
(1)当点运动2秒时,另一动点也从出发沿的路线运动,且在上以每秒1的速度匀速运动,在上以每秒2的速度匀速运动,过作直线使,设点的运动时间为秒,直线与截四边形所得图形的面积为,求关于的函数关系式,并求出的最大值.
(2)当点开始运动的同时,另一动点从处出发沿的路线运动,且在上以每秒的速度匀速运动,在上以每秒2的速度匀度运动,是否存在这样的,使为等腰三角形?若存在,直接写出点运动的时间的值,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com