精英家教网 > 初中数学 > 题目详情
1.如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.
(1)求证:BD是⊙O的切线.
(2)若AB=$\sqrt{3}$,E是半圆$\widehat{AGF}$上一动点,连接AE,AD,DE.
填空:
①当$\widehat{AE}$的长度是$\frac{2}{3}$π时,四边形ABDE是菱形;
②当$\widehat{AE}$的长度是$\frac{1}{3}$π或π时,△ADE是直角三角形.

分析 (1)首先连接OD,由在Rt△ABC中,∠BAC=90°,∠C=30°,⊙O恰好经过边BC的中点D,易得AB=BD,继而证得∠ODB=∠BAC=90°,即可证得结论;
(2)①易得当DE⊥AC时,四边形ABDE是菱形,然后求得∠AOE的度数,半径OD的长,则可求得答案;
②分别从∠ADE=90°,∠DAE=90°,∠AED=90°去分析求解即可求得答案.

解答 (1)证明:如图1,连接OD,
∵在Rt△ABC中,∠BAC=90°,∠C=30°,
∴AB=$\frac{1}{2}$BC,
∵D是BC的中点,
∴BD=$\frac{1}{2}$BC,
∴AB=BD,
∴∠BAD=∠BDA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODB=∠BAO=90°,
即OD⊥BC,
∴BD是⊙O的切线.

(2)①当DE⊥AC时,四边形ABDE是菱形;
如图2,设DE交AC于点M,连接OE,则DE=2DM,
∵∠C=30°,
∴CD=2DM,∴DE=CD=AB=$\frac{1}{2}$BC,
∵∠BAC=90°,
∴DE∥AB,
∴四边形ABDE是平行四边形,
∵AB=BD,
∴四边形ABDE是菱形;
∵AD=BD=AB=CD=$\frac{1}{2}$BC=$\sqrt{3}$,
∴△ABD是等边三角形,OD=CD•tan30°=1,
∴∠ADB=60°,
∵∠CDE=90°-∠C=60°,
∴∠ADE=180°-∠ADB-∠CDE=60°,
∴∠AOE=2∠ADE=120°,
∴$\widehat{AE}$的长度为:$\frac{120×π×1}{180}$=$\frac{2}{3}$π;
故答案为:$\frac{2}{3}π$;

②若∠ADE=90°,则点E与点F重合,此时$\widehat{AE}$的长度为:$\frac{180×π×1}{180}$=π;
若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时$\widehat{AE}$的长度为:$\frac{60×π×1}{180}$=$\frac{1}{3}$π;
∵AD不是直径,
∴∠AED≠90°;
综上可得:当$\widehat{AE}$的长度是$\frac{1}{3}$π或π时,△ADE是直角三角形.
故答案为:$\frac{1}{3}$π或π.

点评 此题属于圆的综合题.考查了切线的判定与性质、菱形的判定、等边三角形的判定与性质、含30°角的直角三角形的性质以及弧长公式等知识.注意准确作出辅助线,利用分类讨论思想求解是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.计算:
(1)(-5)0-($\sqrt{3}$)2+|-3|
(2)解不等式:$\frac{x+2}{3}$-1<2x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.若∠A和∠B的两边分别平行,且∠A比∠B的2倍少30°,则∠B的度数为(  )
A.30°B.70°C.30°或70°D.100°

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD.若∠ECA=58°,则∠GFB的大小为61°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列实数0.3,$\frac{π}{2}$,$\frac{\sqrt{2}}{3}$,$\frac{1}{7}$,$\sqrt{4}$ 中,无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在平面直角坐标系xOy中,矩形OBCD的顶点B,D的坐标分别为(8,0),(0,4).若反比例函数y=$\frac{{k}_{1}}{x}$(x>0)的图象经过对角线OC的中点A,分别交DC边于点E,交BC边于点F.设直线EF的函数表达式为y=k2x+b.
(1)反比例函数的表达式是y=$\frac{8}{x}$;
(2)求直线EF的函数表达式,并结合图象直接写出不等式k2x+b$<\frac{{k}_{1}}{x}$的解集;
(3)若点P在直线BC上,将△CEP沿着EP折叠,当点C恰好落在x轴上时,点P的坐标是(8,3$\sqrt{5}-5$)或(8,-3$\sqrt{5}$-5).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,顶点A、C分别在x轴、y轴的正半轴上,且OA=2,OC=1,矩形对角线AC、OB相交于E,过点E的直线与边OA、BC分别相交于点G、H,以O为圆心,OC为半径的圆弧交OA于D,若直线GH与弧CD所在的圆相切于矩形内一点F,则下列结论:①AG=CH;②GH=$\frac{5}{3}$;③直线GH的函数关系式y=-$\frac{3}{4}x+\frac{5}{4}$;④梯形ABHG的内部有一点P,当⊙P与HG、GA、AB都相切时,⊙P的半径为$\frac{1}{4}$.其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.直线y=$\frac{\sqrt{3}}{3}$x+4与x轴交于点A,与y轴交于点B,以AB为边在第二象限内作等边△ABC
(1)求点C的坐标;
(2)是否存在点M(m,2)使得△ABM的面积等于△ABC的面积,如存在,求出点M的坐标;不存在,说明理由
(3)若点D(4,0)在直线AB上,是否存在点P,使得△ADP为等腰三角形,若存在,求出点P的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,两张宽为1cm的矩形纸条交叉叠放,其中重叠部分部分是四边形ABCD,
(1)试判断四边形ABCD的形状,并说明理由
(2)若∠BAD=30°,求重叠部分的面积.

查看答案和解析>>

同步练习册答案