精英家教网 > 初中数学 > 题目详情
6.计算:
(1)(2$\sqrt{3}$+$\sqrt{2}$)(2$\sqrt{3}$-$\sqrt{2}$);
(2)$\frac{2}{\sqrt{3}+1}$+$\frac{\sqrt{3}}{2}$+1;
(3)$\sqrt{18}$+$\frac{1}{5}$$\sqrt{50}$-4$\sqrt{\frac{1}{2}}$);
(4)3$\sqrt{8}$+2$\sqrt{18}$-3$\sqrt{22}$-$\sqrt{72}$;
(5)($\frac{3}{4}\sqrt{15}$-$\sqrt{12}$)$÷\frac{\sqrt{3}}{2}$.

分析 (1)原式利用平方差公式计算即可得到结果;
(2)原式分母有理化,合并即可得到结果;
(3)原式各项化简后,合并即可得到结果;
(4)原式各项化简后,合并即可得到结果;
(5)原式利用多项式除以单项式法则计算即可得到结果.

解答 解:(1)原式=12-2=10;
(2)原式=$\sqrt{3}$-1+$\frac{\sqrt{3}}{2}$+1=$\frac{3\sqrt{3}}{2}$;
(3)原式=3$\sqrt{2}$-$\sqrt{2}$-2$\sqrt{2}$=0;
(4)原式=6$\sqrt{2}$+6$\sqrt{2}$-3$\sqrt{22}$-6$\sqrt{2}$=6$\sqrt{2}$-3$\sqrt{22}$;
(5)原式=$\frac{3\sqrt{5}}{2}$-4.

点评 此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.抛物线y=ax2+bx+c(a≠0)的顶点为D(1,4),交x轴于A、B两点,且经过点C(2,3)
(1)求抛物线的解析式;
(2)如图,M为线段O、B之间一动点,N为y轴正半轴上一动点,是否存在使M、C、D、N四点围成的四边形周长最小?若存在,求出这个最小值及M、N的坐标;若不存在,请说明理由;
(3)若P是y轴上的点,Q是抛物线上的点,求:以P、Q、A、B为顶点构成平行四边形的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.合肥市某中学科技创新训练小组有A、B、C三位同学,机器人训练小组有D、E、F、G四位同学,他们的水平差不多,现要从中抽取五位同学组成校队参加省级比赛,其中两名科技创新的,三名机器人的,如果学校按照要求随机抽取.
(1)D同学被抽到的概率是多大?
(2)正好抽到ABDEF的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,一个等腰直角三角尺按如图①所示的位置摆放.该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图①中请你通过观察,测量BF与CG的长度,猜想BF与CG满足的数量关系是BF=CG.
(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交直线BC于点D,过点D作DE丄BA于点E,此时请你通过观察、测量DE、DF与CG的长度关系,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.
(3)当三角尺在(2)的基础上沿AC方向继续平移(点F在射线AC上,且点F与点A、点C不重合)时,直接写出DE、DF与CG之间满足的数量关系,不用说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,AB是圆的直径,OC是圆的半径,扇形乙与扇形丙的面积比为2:1
(1)求扇形乙与扇形丙的圆心角的度数;
(2)若该圆的半径为6cm,其扇形乙中弧AC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
(1)-$\frac{1}{4}$$\sqrt{\frac{2}{75}}$÷$\frac{1}{8}$$\sqrt{\frac{8}{5}}$×12$\sqrt{\frac{5}{2}}$
(2)[4xy(1+2y)-6xy2($\frac{4}{3}$+$\frac{1}{3}$x)]÷(-2x)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2$\sqrt{2}$÷(4$\sqrt{2}$-3$\sqrt{6}$)是否等于2$\sqrt{2}$÷4$\sqrt{2}$-2$\sqrt{2}$÷3$\sqrt{6}$呢?为什么?它们的计算结果分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:?ABCD中,DE⊥AC于E,BF⊥AC于F,M,N分别是DC,AB的中点.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图,在△ABC中,∠B=45°,∠BCA=30°,过点A、B、C三点作⊙O,过点C作⊙O的切线交BA延长线于点D,连接OA交BC于E.
(1)求证:OA∥CD;
(2)求证:△ABE∽△DCA;
(3)若OA=2,求BC的长.

查看答案和解析>>

同步练习册答案