精英家教网 > 初中数学 > 题目详情

【题目】如图,点B是线段AC上一点,AC=4ABAB=6cm,直线MN经过线段BC的中点P

1)图中共有线段______条,图中共有射线______条.

2)图中有______组对顶角,与∠MPC互补的角是______

3)线段AP的长度是______

【答案】162;(22,∠APM和∠CPN;(315cm

【解析】

1)根据题意即可得到结论;

2)根据对顶角和补角的定义即可得到结论;

3)根据已知条件得到BC=3AB=18cm,根据线段中点的定义得到PBBC=9cm,于是得到结论.

1)图中共有线段6条,图中共有射线2条.

2)图中有2组对顶角,与∠MPC互补的角是∠APM和∠CPN

3)∵AC=4ABAB=6cm,∴BC=3AB=18cm

P是线段BC的中点,∴PBBC=9cm,∴AP=AB+PB=6+9=15cm),∴线段AP的长度是15cm

故答案为:622,∠APM和∠CPN15cm

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是(  )

A. 4nB. 4mC. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,O在直线MN,∠AOB=90°,OC平分∠MOB.

(1)若∠AOC=则∠BOC=_______,∠AOM=_______,∠BON=_________

(2)若∠AOC=∠BON=_______(用含有的式子表示);

(3)将∠AOB绕着点O顺时针转到图2的位置,其他条件不变若∠AOC=(为钝角),求∠BON的度数(用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有5张写着不同数字的卡片,请按要求完成下列问题:

若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是______

若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是______

若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:OBOCOMON内的射线.

如图1,若OM平分ON平分OB绕点O内旋转时,则的大小为______

如图2,若OM平分ON平分绕点O内旋转时,求的大小;

的条件下,若,当内绕着点O秒的速度逆时针旋转t秒时,中的一个角的度数恰好是另一个角的度数的两倍,求t的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.

(1)求证: =
(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;
(3)若MA=6 ,sin∠AMF= ,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y= 交于E,F两点,若AB=2EF,则k的值是( )

A.﹣1
B.1
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.

(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.

查看答案和解析>>

同步练习册答案