| A. | $\frac{23}{9}$ | B. | $\frac{128}{9}$ | C. | 16 | D. | $\frac{15}{4}$ |
分析 根据正方形面积公式得到正方形的边长,判断△AOD和△ABH是等腰直角三角形,得出B点坐标,根据B点坐标得到反比例函数解析式,设DN=a,则EN=NF=a,根据正方形的性质易得E,F的坐标,求得M点的坐标,再根据反比例函数图象上点的坐标特征得出关于a的方程,解方程求出a的值,最后计算正方形DEFG的面积.
解答 解:作BH⊥y轴于B,连结EG交x轴于P,如图,
∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,![]()
∴∠EDF=45°,
∴∠ADO=45°,
∴∠DAO=∠BAH=45°,
∴△AOD和△ABH都是等腰直角三角形,
∵S正方形ABCD=8,
∴AB=AD=2$\sqrt{2}$,
∴OD=OA=AH=BH=$\frac{\sqrt{2}}{2}$×2$\sqrt{2}$=2,
∴B点坐标为(2,4),
把B(2,4)代入y=$\frac{k}{x}$得k=2×4=8,
∴反比例函数解析式为y=$\frac{8}{x}$,
设DN=a,则EN=NF=a,
∴E(a+2,a),F(2a+2,0),
∵M点为EF的中点,
∴M点的坐标为($\frac{3}{2}$a+2,$\frac{a}{2}$),
∵点M在反比例函数y=$\frac{8}{x}$的图象上,
∴$\frac{3a+4}{2}$•$\frac{a}{2}$=8,
整理得3a2+4a-32=0,解得a1=$\frac{8}{3}$,a2=-4(舍去),
∴正方形DEFG的面积=4•$\frac{1}{2}$DN•DF=4•$\frac{1}{2}$•$\frac{8}{3}$•$\frac{8}{3}$=$\frac{128}{9}$.
故选B.
点评 本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征和正方形的性质;理解坐标与图形性质,记住线段中点的坐标公式;会解一元二次方程.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 16,40° | B. | 8,50° | C. | 16,50° | D. | 8,40° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com