【题目】如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.
(1)求∠ACD度数;
(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)
【答案】(1) 25°;(2)2.1.
【解析】试题分析:(1)延长AC交ON于点E,如图,利用互余计算出∠OCE=65°,再利用对顶角相等得到∠ACB=∠OCE=65°,再根据∠ACD=90°-∠ACB即可解决问题;
(2)接着在Rt△ABC中利用∠ACB的余弦可计算出BC,然后根据矩形的性质即可得到AD的长.
试题解析:(1)延长AC交ON于点E,如图,
∵AC⊥ON,
∴∠OEC=90°,
在Rt△OEC中,
∵∠O=25°,
∴∠OCE=65°,
∴∠ACB=∠OCE=65°,
∴∠ACD=90°﹣∠ACB=25°
(2)∵四边形ABCD是矩形,
∴∠ABC=90°,AD=BC,
在Rt△ABC中,∵cos∠ACB=,
∴BC=ACcos65°=5×0.42=2.1,
∴AD=BC=2.1.
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx﹣2的图象与反比例函数的图象交于A、B两点,过A作AC⊥x轴于点C.已知cos∠AOC=,OA=.
(1)求反比例函数及直线AB的解析式;
(2)求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于C点,点E在第一象限且四边形ACBE为矩形.
(1)求∠BCE的度数;
(2)如图2,F为线段BC上一动点,P为第四象限内抛物线上一点,连接CP、FP、BP、EF,M,N分别是线段CP,FP的中点,连接MN,当△BCP面积最大,且MN+EF最小时,求PF的长度;
(3)如图3,将△AOC绕点O顺时针旋转一个角度α(0°<α<180°),点A,C的对应点分别为A',C',直线A'C'与x轴交于点G,G在x轴正半轴上且OG=.线段KH在直线A'C'上平移( K在H左边),且KH=5,△KHC是否能成为等腰三角形?若能,请求出所有符合条件的点K的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数形结合是重要的数学思想方法之一,数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转变来解决数学问题。数轴是数形结合的最基础图形,是连接数与形的桥梁之一,请解决下面的问题:
(1)如图1,点B表示的数是1,则点A表示的数是 .
(2)如果点M表示数-2,将点M向右移动6个单位长度到达终点N,那么终点N表示的数是4,此时M、N两点间的距离是 .
(3)若∣x-0∣意义表示数x到原点的距离,则∣x-3∣的意义表示数x到3的距离;类似的式子∣x+3∣=4,则x= .
(4)由(3)可知,一般地,如果点A表示数为a,点B表示的数b,则A、B两点间的距离表示为 .
(5)如图2,数轴上的两个点A、B所表示的数分别是a,b,点O为原点。在a+b,a-b,∣a∣-∣b∣这三个运算结果中,是正数的有 个.
(6)利用数轴直接写出∣x-2∣+∣x+5∣的最小值= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求证:无论m为何值时,这个方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形的顶点、分别在、轴的正半轴上,点在反比例函数的第一象限内的图像上,,,动点在轴的上方,且满足.
(1)若点在这个反比例函数的图像上,求点的坐标;
(2)连接、,求的最小值;
(3)若点是平面内一点,使得以、、、为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.
(1)求∠BCD的度数;
(2)将图①中的△BCD绕点B顺时针旋转,得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.
①求∠C′CB的度数;
②求证:△C′BD′≌△CAE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在数轴上分别表示有理数,两点间的距离表示为.且.
(1)数轴上表示2和5的两点之间的距离是___,
数轴上表示2和5的两点之间的距离是___,
数轴上表示1和3的两点之间的距离是___;
(2)数轴上表示x和1的两点A和B之间的距离是___,如果|AB|=2,那么x=___;
(3)当代数式|x+1|+|x2|取最小值时,相应x的取值范围是___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com