【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)
(1)根据题意,填写下表:
时间x(h) 与A地的距离 | 0.5 | 1.8 | _____ |
甲与A地的距离(km) | 5 |
| 20 |
乙与A地的距离(km) | 0 | 12 |
|
(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;
(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.
【答案】(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6
【解析】
(Ⅰ)根据路程、时间、速度三者间的关系通过计算即可求得相应答案;
(Ⅱ)根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;
(Ⅲ)根据题意,得,然后分别将y=12代入即可求得答案.
(Ⅰ)由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,
当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),
当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),
此时乙行驶的时间是2﹣1.5=0. 5(时),
所以乙离开A的距离是40×0.5=20(km),
故填写下表:
(Ⅱ)由题意知:
y1=10x(0≤x≤1.5),
y2=;
(Ⅲ)根据题意,得,
当0≤x≤1.5时,由10x=12,得x=1.2,
当1.5<x≤2时,由﹣30x+60=12,得x=1.6,
因此,当y=12时,x的值是1.2或1.6.
科目:初中数学 来源: 题型:
【题目】在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”. 最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:
品种 | 产量(斤/每棚) | 销售量(元/每斤) | 成本(元/每棚) |
香瓜 | 2000 | 12 | 8000 |
甜瓜 | 4500 | 3 | 5000 |
现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.
根据以上提供的信息,请你解答下列问题:
(1)求出y与x之间的函数关系式;
(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚? 才能使获得的利润不低于10万元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点M( , ),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是 上的动点.
(1)写出∠AMB的度数;
(2)点Q在射线OP上,且OPOQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E. ①当动点P与点B重合时,求点E的坐标;
②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学举办运动会,在1500米的项目中,参赛选手在200米的环形跑道上进行,如图记录了跑得最快的一位选手与最慢的一位选手的跑步全过程(两人都跑完了全程),其中x代表的是最快的选手全程的跑步时间,y代表的是这两位选手之间的距离,下列说不合理的是( )
A. 出发后最快的选手与最慢的选手相遇了两次
B. 出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短
C. 最快的选手到达终点时,最慢的选手还有415米未跑
D. 跑的最慢的选手用时4′46″
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了平面直角坐标系及格点△AOB.(顶点是网格线的交点)
(1)画出将△AOB沿y轴翻折得到的△AOB1,则点B1的坐标为_________.
(2)画出将△AOB沿射线AB1方向平移2.5个单位得到的△A2O2B2,则点A2的坐标为_______.
(3)请求出△AB1B2的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是( )
A.c>0
B.2a+b=0
C.b2﹣4ac>0
D.a﹣b+c>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣ +bx+c的图象经过A(2,0)、B(0,﹣6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,且.
(1)求的值;
(2)①在轴的正半轴上存在一点,使,求点的坐标;
②在坐标轴上一共存在多少个点,使成立?请直接写出符合条件的点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com