精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点M( ),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是 上的动点.
(1)写出∠AMB的度数;
(2)点Q在射线OP上,且OPOQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E. ①当动点P与点B重合时,求点E的坐标;
②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.

【答案】
(1)解:过点M作MH⊥OD于点H,

∵点M( ),

∴OH=MH=

∴∠MOD=45°,

∵∠AOD=90°,

∴∠AOM=45°,

∵OM=AM,

∴∠OAM=∠AOM=45°,

∴∠AMO=90°,

∴∠AMB=90°;


(2)解:①∵OH=MH= ,MH⊥OD,

∴OM= =2,OD=2OH=2

∴OB=4,

∵动点P与点B重合时,OPOQ=20,

∴OQ=5,

∵∠OQE=90°,∠POE=45°,

∴OE=5

∴E点坐标为(5 ,0)

②∵OD=2 ,Q的纵坐标为t,

∴S=

如图2,当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,

∵OP=4,OPOQ=20,

∴OQ=5,

∵∠OFC=90°,∠QOD=45°,

∴t=QF=

此时S=

如图3,当动点P与A点重合时,Q点在y轴上,

∴OP=2

∵OPOQ=20,

∴t=OQ=5

此时S=

∴S的取值范围为5≤S≤10.


【解析】(1)首先过点M作MH⊥OD于点H,由点M( ),可得∠MOH=45°,OH=MH= ,继而求得∠AOM=45°,又由OM=AM,可得△AOM是等腰直角三角形,继而可求得∠AMB的度数;(2)①由OH=MH= ,MH⊥OD,即可求得OD与OM的值,继而可得OB的长,又由动点P与点B重合时,OPOQ=20,可求得OQ的长,继而求得答案;②由OD=2 ,Q的纵坐标为t,即可得S= ,然后分别从当动点P与B点重合时,过点Q作QF⊥x轴,垂足为F点,与当动点P与A点重合时,Q点在y轴上,去分析求解即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是(
A.( ,3)、(﹣ ,4)
B.( ,3)、(﹣ ,4)??
C.( )、(﹣ ,4)
D.( )、(﹣ ,4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:
(1)该样本的容量是 , 样本中捐款15元的学生有人;
(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OA=OB,点PABO的角平分线的交点,若PNPAx轴于N,延长OPABM,写出AOONPM之间的数量关系,并证明之

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动:探究利用角的对称性构造全等三角形解决问题

(1)如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形;(写出简单做法,不用证明两三角形全等,不用尺规作图亦可)

(2)如图②,在ABC中,∠ACB=90°,B=60°,AD、CE分别是∠BAC、BCA的平分线,AD、CE相交于点F.请直接填空:AFE= 度,DF EF(>,<=);

(3)如图③,在ABC中,如果∠ACB≠90°,而(2)中的其他条件不变,请问,你在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A,B两地相距20km.甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发.设甲的骑行时间为x(h)(0≤x≤2)

(1)根据题意,填写下表:

时间x(h)

A地的距离

0.5

1.8

_____

甲与A地的距离(km)

5

  

20

乙与A地的距离(km)

0

12

  

(2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;

(3)设甲,乙两人之间的距离为y,当y=12时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程kx2﹣4x+2=0有实数根.
(1)求k的取值范围;
(2)若△ABC中,AB=AC=2,AB,BC的长是方程kx2﹣4x+2=0的两根,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是

查看答案和解析>>

同步练习册答案