分析 根据在Rt△ABC中,∠C=90°,BD平分∠ABC,tan A=$\frac{\sqrt{3}}{3}$,AD=20,可以得到∠A的度数,从而可以得到∠ABC以及∠ABD和∠CBD的度数,由AD的长度可以得到BD、CD的长,从而可以求得BC的长.
解答 解:∵tan A=$\frac{\sqrt{3}}{3}$,
∴∠A=30°,
∴∠ABC=60°,
又∵BD平分∠ABC,AD=20,
∴∠A=∠ABD=∠CBD=30°,
∴AD=BD=20,
∴DC=10,
即AC=AD+DC=30,
又∵tan A=$\frac{BC}{AC}$,
∴BC=AC•tan A=30×$\frac{\sqrt{3}}{3}$=10$\sqrt{3}$.
即BC的长为10$\sqrt{3}$.
点评 本题考查解直角三角形,解题的关键是找出各个角和各条边之间的关系.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x<a+1 | B. | x<b+1 | C. | b+1<x<a+1 | D. | b<x<a |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com