如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC,能否在△BCE中找到与AB+AD相等的线段,并说明理由.
【考点】全等三角形的判定与性质.
【专题】探究型.
【分析】根据已知条件先利用AAS判定△ADC≌△BCE从而得出AD=BC,AC=BE,所以AB+AD=AB+BC=AC=BE.
【解答】解:在△BCE中与AB+AD相等的线段是BE.
理由:∵∠DCE=90°,∠DAC=90°,BE⊥AC于B,
∴∠D+∠DCA=90°,∠DCA+∠ECB=90°.
∴∠D=∠ECB.
∵DC=EC,
∴△ADC≌△BCE(AAS).
∴AD=BC,AC=BE.
∴AB+AD=AB+BC=AC=BE.
所以在△BCE中与AB+AD相等的线段是BE.
【点评】本题考查三角形全等的判定和性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.找准对应边,利用相等的线段进行转移是解决本题的关键.
科目:初中数学 来源: 题型:
一条直线上有四个点A、B、C、D,且线段AB=18cm,BC=8cm,点D为AC的中点,则线段AD的长是( )
A.13cm B.5cm C.13cm或5cm D.10cm
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙两辆汽车分别从A、B两地同时出发,沿同一条公路相向而行.乙车出发2h休息.与甲车相遇.继续行驶.设甲、乙两车与B地的距离y(km)与行驶的时间x(h)之间的函数图象如图所示.
(1)写出甲车与B地的距离y(km)与行驶时间x(h)之间的函数关系式 _______
(2)乙车休息的时间为_________;
(3)写出休息前,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式___________;休息后,乙车与B地的距离y(km)与行驶的时间x(h)之间的函数关系式______;
(4)求行驶多长时间两车相距100km.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.
(1)求线段BC的长;
(2)连结OA,求线段OA的长;
(3)若∠BAC=120°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
下列选项中,不是依据三角形全等知识解决问题的是( )
A.利用尺规作图,作一个角等于已知角
B.工人师傅用角尺平分任意角
C.利用卡钳测量内槽的宽
D.用放大镜观察蚂蚁的触角
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com