精英家教网 > 初中数学 > 题目详情

【题目】如图(1),菱形ABCD对角线AC、BD的交点O是四边形EFGH对角线FH的中点,四个顶点A、B、C、D分别在四边形EFGH的边EF、FG、GH、HE上.

(1)求证:四边形EFGH是平行四边形;
(2)如图(2)若四边形EFGH是矩形,当AC与FH重合时,已知 =2,且菱形ABCD的面积是20,求矩形EFGH的长与宽.

【答案】
(1)证明:∵点O是菱形ABCD对角线AC、BD的交点,

∴OA=OC,OD=OB,

∵点O是线段FH的中点,

∴OF=OH.

在△AOF和△COH中,有

∴△AOF≌△COH(SAS),

∴∠AFO=∠CHO,

∴AF∥CH.

同理可得:DH∥BF.

∴四边形EFGH是平行四边形


(2)设矩形EFGH的长为a、宽为b,则AC=

=2,

∴BD= AC= ,OB= BD= ,OA= AC=

∵四边形ABCD为菱形,

∴AC⊥BD,

∴∠AOB=90°.

∵四边形EFGH是矩形,

∴∠AGH=90°,

∴∠AOB=∠AGH=90°,

又∵∠BAO=∠CAG,

∴△BAO∽△CAG,

,即

解得:a=2b①.

∵S菱形ABCD= ACBD= =20,

∴a2+b2=80②.

联立①②得:

解得: ,或 (舍去).

∴矩形EFGH的长为8,宽为4


【解析】(1)根据菱形的性质可得出OA=OC,OD=OB,再由中点的性质可得出OF=OH,结合对顶角相等即可利用全等三角形的判定定理(SAS)证出△AOF≌△COH,从而得出AF∥CH,同理可得出DH∥BF,依据平行四边形的判定定理即可证出结论;(2)设矩形EFGH的长为a、宽为b.根据勾股定理及边之间的关系可找出AC= ,BD= ,利用菱形的性质、矩形的性质可得出∠AOB=∠AGH=90°,从而可证出△BAO∽△CAG,根据相似三角形的性质可得出 ,套入数据即可得出a=2b①,再根据菱形的面积公式得出a2+b2=80②,联立①②解方程组即可得出结论.本题考查了平行四边形的判定、全等三角形的判定及性质、菱形的性质、矩形的性质以及相似三角形的判定及性质,解题的关键:(1)找出AF∥CH、DH∥BF;(2)找出关于a、b的二元二次方程组.本题属于中档题,难度不大,但解题过程叫繁琐,解决该题型题目时,根据相似三角形的性质找出对应边的比例关系是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABCBA=BC,点DAB延长线上一点,DF⊥ACFBCE,

求证:△DBE是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.

(1)求证:△ABF≌△CBE;
(2)判断△CEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S1 , 正八边形外侧八个扇形(阴影部分)面积之和为S2 , 则 =(

A.
B.
C.
D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1

(1)△A1B1C1与△ABC的位似比是
(2)画出△A1B1C1关于y轴对称的△A2B2C2
(3)设点P(a,b)为△ABC内一点,则依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠AOB=41°,点P为∠AOB内的一点,分别作出P点关于OAOB的对称点,连接OAM,交OBN,则PMN的周长为_________,∠MPN________°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点DEBC上,连接ADAE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )

A. BD=CE B. AD=AE C. DA=DE D. BE=CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(已知反比例函数y= 与一次函数y=x+2的图象交于点A(﹣3,m)
(1)求反比例函数的解析式;
(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:
①∠APB=120°;②AF+BE=AB.
那么,当AM∥BN时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;
(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.

查看答案和解析>>

同步练习册答案