【题目】某校为了调查学生预防“新型冠状病毒”知识的情况,在全校随机抽取了一部分学生进行民意调查,调查结果分为A.B.C三个等级,其中A:非常了解,B:了解,C:不了解,并根据调查结果绘制了如下两个不完整的统计图,请根据统计图,解答下列问题:
(1)这次抽查的学生为 人;
(2)求等级A在扇形统计图中所占圆心角的度数;
(3)若该校有学生2200人,请根据抽样调查的结果,估计该校约有多少学生对预防新型冠状病毒知识已经了解.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线分别交x轴、y轴于点A(2,0)、B(0,4),点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.
(1)若.
①求抛物线的解析式;
②当线段PD的长度最大时,求点P的坐标;
(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交、于两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线交于点,若,则矩形的面积等于__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在和中,,,,点,,分别是,,的中点,连接,.
(1)如图①,,点在上,则 ;
(2)如图②,,点不在上,判断的度数,并证明你的结论;
(3)连接,若,,固定,将绕点旋转,当的长最大时,的长为 (用含的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE连接BE
(1)发现问题:如图①,若E是线段AC的中点,连接EF,其他条件不变,猜想线段BE与EF的数量关系
(2)探究问题:如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想
(3)解决问题:如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=3请直接写出AF的长度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是直径所对的半圆弧,点是与直径所围成图形的外部的一个定点,,点是上一动点,连接交于点.
小明根据学习函数的经验,对线段,,,进行了研究,设,两点间的距离为,,两点间的距离为,,两点之间的距离为.
小明根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.
下面是小明的探究过程,请补充完整:
(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值:
0.00 | 1.00 | 2.00 | 3.00 | 3.20 | 4.00 | 5.00 | 6.00 | 6.50 | 7.00 | … | |
0.00 | 1.04 | 2.09 | 3.11 | 3.30 | 4.00 | 4.41 | 3.46 | 2.50 | 1.53 | … | |
6.24 | 5.29 | 4.35 | 3.46 | 3.30 | 2.64 | 2.00 | 1.80 | 2.00 | … |
写出表格中的值,_______________________(保留两位小数);
(2)在同一平面直角坐标系中,画出函数的图象:
(3)结合函数图象解决问题:当时,的长度约为_____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
(1)如图1,已知四边形在正方形网格中,顶点都在格点上,判断:四边形______(填“是”或“不是”)以为“相似对角线”的四边形;
(2)如图,在四边形中,,,对角线平分.求证:是四边形的“相似对角线”;
(3)如图,已知是四边形的“相似对角线”,.连接,若的面积为,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转60°得到AE,连接EC,则:
(1)①∠ACE的度数是 ; ②线段AC,CD,CE之间的数量关系是 .
(2)如图②,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请判断线段AC,CD,CE之间的数量关系,并说明理由;
(3)如图②,AC与DE交于点F,在(2)条件下,若AC=8,求AF的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com