精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于( )
A.10
B.8
C.6或10
D.8或10

【答案】C
【解析】解:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2 ,AD=6,

在Rt△ABD和Rt△ACD中,

根据勾股定理得:BD= =8,CD= =2,

此时BC=BD+CD=8+2=10;

如图2所示,AB=10,AC=2 ,AD=6,

在Rt△ABD和Rt△ACD中,

根据勾股定理得:BD= =8,CD= =2,此时BC=BD﹣CD=8﹣2=6,

则BC的长为6或10.

所以答案是:C.

【考点精析】本题主要考查了勾股定理的概念的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,点轴上的一个动点,若点关于直线的对称点恰好落在坐标轴上,则点的坐标为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,以BC边为直径作⊙O交AB边于点D,过点D作DE⊥AC于点E.

(1)求证:DE是⊙O的切线;
(2)若⊙O的半径等于 ,cosB= ,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,PAD边上一点,沿直线BP将△ABP翻折至△EBP(点A的对应点为点E),PECD相交于点O,且OE=OD.

(1)求证:PE=DH;

(2)若AB=10,BC=8,求DP的长.

【答案】1见解析;2

【解析】试题分析:(1) 先证明DOP≌△EOH再利用等量代换得到PE=DH.

(2) DP=x RtBCH中,先用 x表示三角形三边,利用勾股定理列式解方程.

试题解析:

1)解:证明:OD=OED=∠E=90°DOP=∠EOH

∴△DOP≌△EOH

OP=OH

PO+OE=OH+OD

PE=DH.

2)解:设DP=x,则EH=xBH=10﹣x

CH=CDDH=CDPE=10﹣8﹣x=2+x

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2

x=,

DP=

型】解答
束】
25

【题目】某文教店老板到批发市场选购A,B两种品牌的绘图工具套装,每套A品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.

(1)求A,B两种品牌套装每套进价分别为多少元?

(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为( )
A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;

(2)若ABAC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形ABCD的对角线相交于点O,AC= ,CD=1,

(1)尺规作图:作∠ABC的平分线交AD于点E,连结CE;
(2)判断线段BE与CE的关系,并证明你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和直线CD相交于O点,OE⊥ODOF平分∠AOE∠BOD26°

(1)写出∠COB的邻补角。

(2)∠COF的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,点满足轴于点

1)点的坐标为 ,点的坐标为

2)如图1,若点轴上,连接,使,求出点的坐标;

3)如图2是线段所在直线上一动点,连接平分,交直线于点,作,当点在直线上运动过程中,请探究的数量关系,并证明.

查看答案和解析>>

同步练习册答案