【题目】已知在平面直角坐标系中,点满足,轴于点.
(1)点的坐标为 ,点的坐标为 ;
(2)如图1,若点在轴上,连接,使,求出点的坐标;
(3)如图2,是线段所在直线上一动点,连接,平分,交直线于点,作,当点在直线上运动过程中,请探究与的数量关系,并证明.
【答案】(1)(3,2),(3,0);(2)(1,0)或(5,0);(3)2=,理由见详解
【解析】
(1)根据偶数次幂和二次根式的非负性,求出a,b的值,即可求出A、B的坐标;
(2)根据三角形的面积公式,求出BM的值,进而即可求出M的坐标;
(3)根据平行线的性质得∠EON=∠OEP,根据角平分线的性质得∠EON=∠EOP,进而得∠OEP=∠EOP,结合三角形内角和定理以及垂直的意义,即可得到结论.
(1)∵,
又∵且,
∴,,即:a=3,b=2,
∴(3,2),
∵轴于点,
∴(3,0).
故答案是:(3,2),(3,0);
(2)∵点在轴上,,轴,,如图1,
∴,即:,
∴BM=2,
∴点M的坐标为(1,0)或(5,0);
(3)2=,理由如下:
∵轴,
∴AB∥y轴,
∴∠EON=∠OEP,
∵平分,
∴∠EON=∠EOP,
∴∠OEP=∠EOP=(180°-)÷2,
∵,
∴+∠EOP=90°,
∴+ =90°,即:2=
科目:初中数学 来源: 题型:
【题目】四川雅安地震牵动全国人民的心,同学们都在积极进行捐款活动.某校九(2)班同学人人拿出自己的零花钱,踊跃募捐,学生捐款额有5元、10元、15元、20元四种情况.根据统计数据绘制了图①和图②两幅尚不完整的统计图.则该班同学平均捐款 ( )
A. 12元 B. 12.5元 C. 13元 D. 13.5元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形ABC中,∠C=90°,AC=6cm,BC=10cm,点P从B点开始向C点运动速度是每秒1cm,设运动时间是t秒,
(1)用含t的代数式来表示三角形ACP的面积.
(2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点P在BC上的什么位置?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时张用A方法,其余用B方法。
(1)用的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起(其中,,),固定三角板,另一三角板的边从边开始绕点顺时针旋转,设旋转的角度为.
(1)当时;
①若,则的度数为 ;
②若,求的度数;
(2)由(1)猜想与的数量关系,并说明理由;
(3)当时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠2,则下列条件中不一定能使△ABC≌△ABD的是( )
A. AC=AD B. BC=BD C. ∠C=∠D D. ∠3=∠4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五一假期过后,小明到校后发现忘记带数学课本,一看手表,离上课还有20分钟,他立刻步行返回家中取书,同时,他的父亲也发现小明忘记带数学课本,带上课本立刻以小明步行速度的2倍骑车赶往学校.父子在途中相遇,小明拿到课本后马上按原速步行返回学校,到校后发现迟到了4分钟.如图是父子俩离学校的路程s(米)与所用时间t(分)之间的函数关系,请结合图像,回答下列问题:
(1)两人相遇处离学校的距离是多少米?
(2)试求小明的父亲在赶往学校的过程中,路程s与时间t之间的函数表达式;
(3)假如小明父子相遇拿到课本后,改由他的父亲骑车搭他到学校,他会迟到吗?如果会,迟到几分钟;如果不会,能提前几分钟到校?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).
(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子. ①要使折成的长方形盒子的底面积为484cm2 , 那么剪掉的正方形的边长为多少?
②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.
(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2 , 求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com