【题目】已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,G为AE中点,连接BG
(1)求证:△ABE≌△ADF
(2)如图2,过点G作BG的垂线交对角线AC于点H,求证:GH=GB;
(3)如图3,连接HF,若CH=3AH,AD=2,求线段HF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)5.
【解析】试题分析:(1)如图1中,由△ABE≌△ADF,推出∠AFD=∠E,由AG=GE,推出GB=GE=GA,推出∠E=∠GBE=∠AFD,由∠GBE+∠GBC=180°,推出∠AFD+∠GBC=180°即可;
(2)如图2中,连接BD交AC于O,连接OG、BH、取BH的中点K,连接GK、OK.只要证明O、H、G、B四点共圆,由AG=GE,AO=OC.推出OG∥CE,推出∠GOB=∠OBC=45°,即可解决问题;
(3)如图3中,如图3中,设OG交AB于T,GH交AB于P.,作HM⊥DF于M.只要证明∠EAB=∠GBP=∠PGT=∠HBO,推出tan∠EAB=tan∠HBO=,由CH=3AH,OA=OC=OB,推出tan∠EAB=tan∠HBO==,BE=DF=,在RtHMF中,利用勾股定理即可解决问题.
试题解析:(1)如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠AEF=90°,
∴∠EAB=∠DAF,∵∠ABE=∠ADF=90°,∴△ABE≌△ADF,∴∠AFD=∠E,
∵AG=GE,∴GB=GE=GA,∴∠E=∠GBE=∠AFD,∵∠GBE+∠GBC=180°,∴∠AFD+∠GBC=180°;
(2)如图2,连接BD交AC于O,连接OG、BH、取BH的中点K,连接GK、OK,
∵∠BGH=∠BOH=90°,BK=KH,∴GK=KH=OK=KB,∴O、H、G、B四点共圆,
∵AG=GE,AO=OC,∴OG∥CE,
∴∠GOB=∠OBC=45°,∴∠GOH=∠GBH=45°,∵∠BGH=90°,
∴∠GBH=∠GHB=45°, ∴GH=GB;
(3)如图3,设OG交AB于T,GH交AB于P,作HM⊥DF于M,
∵OG∥EC,AB⊥CE,∴OG⊥AB,易证∠EAB=∠GBP=∠PGT=∠HBO,
∴tan∠EAB=tan∠HBO=,∵CH=3AH,OA=OC=OB,∴tan∠EAB=tan∠HBO==,
∵AB=AD=2,∴BE=DF=,在Rt△HMF中,易证FM=,HM=,
∴HF==5.
科目:初中数学 来源: 题型:
【题目】观察下列两个等式:,,给出定义如下:我们称使等式成立的一对有理数“,”为“共生有理数对”,记为(,).
(1)通过计算判断数对“2,1,“4,”是不是“共生有理数对”;
(2)若(6,a)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则“n,m”___“共生有理数对”(填“是”或“不是”),并说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点坐标为A(1,-4),B(5,-4),C(4,-1).
(1)在方格纸中画出△ABC;
(2)求出△ABC的面积;
(3)若把△ABC向上平移6个单位长度,再向左平移7个单位长度得到△A′B′C′,在图中画出△A′B′C′,并写出B′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中, , 为上一点,且, 为的中点.下列结论:①;②;③;④.其中正确的有____________.(请把所有正确结论的序号填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年夏季山洪暴发,易发生滑坡,经过地质人员勘测,当坡角不超过时,可以确保山体不滑坡.某中学紧挨一座山体斜坡,如图所示,已知,斜坡长30米,坡角,为保证改造后的山体不滑坡,求至少是多少米?(精确到0.1米, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形.
(2)若AB=5,AC=6,求四边形CODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国西部地区约占我国国土面积的,我国国土面积约960万平方公里。若用科学记数法表示,则我国西部地区的面积为( )
A. 6.4×106平方公里 B. 6.4×107平方公里
C. 640×104平方公里 D. 64×105平方公里
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学活动小组在做角的拓展图形练习时,经历了如下过程:
(1)操作发现:点为直线上一点,过点作射线,使将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方,如图:将图1中的三角板绕点旋转,当直角三角板的边在的内部,且恰好平分时,如图2.则下列结论正确的是 (填序号即可).
①②③平分④的平分线在直线上
(2)数学思考:同学们在操作中发现,当三角板绕点旋转时,如果直角三角板的边在的内部且另一边在直线AB的下方,那么与的差不变,请你说明理由;如果直角三角板的、边都在的内部,那么与的和不变,请直接写出与的和,不要求说明理由.
(3)类比探索:三角板绕点继续旋转,当直角三角板的边在的内部时,如图3,求与相差多少度?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】按下列要求画图,并回答问题.
如图,已知∠ABC.
(1)在射线BC上戳取BD=BA,连接AD;
(2)画∠ABD的平分线交线段AD于点M.
回答问题:线段AM和线段DM的大小关系是:AM DM.∠AMB的度数为 度.(精确到1度).
(友情提醒:截取用圆规,并保留痕迹:画完图要下结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com