【题目】如图,等腰△ABC中,AB=AC=3,BC=2,BC边上的高AO,点D为射线AO上一点,一动点P从点A出发,沿AD﹣DC运动,到达点C停止,动点P在AD上运动速度为3个单位每秒,动点P在CD上运动速度为1个单位每秒,则当AD=____时,运动时间最短.
【答案】
【解析】
如图,作DH⊥AB于H,CM⊥AB于M,交AO于D′.运动时间t=+ =+CD,由AHD∽△AOB,推出DH=AD,可得AD+CD=CD+DH,推出当C,D,H共线且和CM重合时,运动时间最短.
解:如图,作DH⊥AB于H,CM⊥AB于M,交AO于D′.
∵运动时间t=+=+CD,
∵AB=AC,AO⊥BC,
∴BO=OC=1,
∵∠DAH=∠BAO,∠DHA=∠AOB=90°,
∴△AHD∽△AOB,
∴DH=AD,
∴AD+CD=CD+DH,
∴当C,D,H共线且和CM重合时,运动时间最短,
∵,BCAO=ABCM,
∴CM=,
∴,
∵AD′=3MD′,设MD′=m,则AD′=3m,
则有:9m2﹣m2=,
∴m=或﹣(舍弃),
∴AD′=,
故答案为.
科目:初中数学 来源: 题型:
【题目】如图1,动点P从直角梯形ABCD的直角顶点B出发,沿BCDA的顺序运动,得到以点P移动的路程x为自变量,△ABP面积y为函数的图象,如图2,则梯形ABCD的面积是( )
A. 104B. 120C. 80D. 112
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC=1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求的值.
(3)应用拓展:
如图3,已知l1∥l2,l1与l2之间的距离为2.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l2上,有一边的长是BC的倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l2于点D.求CD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(,0),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为,连接AC、BD交于点O,CE平分∠ACD交BD于点E,
(1)求DE的长;
(2)过点EF作EF⊥CE,交AB于点F,求BF的长;
(3)过点E作EG⊥CE,交CD于点G,求DG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB=AC,BD是⊙O的直径,AD与BC交于点E,F在DA的延长线上,且BF=BE.
(1)试判断BF与⊙O的位置关系,并说明理由;
(2)若BF=6,∠C=30°,求阴影的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点A(m,6),B(6,1)在反比例函数图象上,作直线AB,连接OA、OB.
(1)求反比例函数的表达式和m的值;
(2)求△AOB的面积;
(3)如图2,E是线段AB上一点,作AD⊥x轴于点D,过点E作x轴的垂线,交反比例函数图象于点F,若EF=AD,求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知,在△ABC中,∠BCA=90°,AC=kBC,点D,E分别在边BC,AC上,且AE=kCD,作线段DF⊥DE,且DE=kDF,连接EF交AB于点G.
(1)如图1,当k=1时,求证:①∠CED=∠BDF,②AG=GB;
(2)如图2,当k≠1时,猜想的值,并说明理由;
(3)当k=2,AE=4BD时,直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com