精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于AB两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于CD两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDEEO两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则St之间的函数关系的图象大致是(  )

A. B.

C. D.

【答案】C

【解析】

分别求出当0t≤2时和当2t≤4St之间的函数关系式,由此即可解答.

0t≤2时,St2

2t≤4时,St22t42=﹣t2+8t8

观察图象可知,St之间的函数关系的图象大致是C

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A(3y1)B(2y2)均在抛物线yax2+bx+c上,点P(mn)是该抛物线的顶点,若y1y2n,则m的取值范围是(  )

A.3m2B.m-C.m>﹣D.m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为有效利用电力资源,某市电力局采用“峰谷”用电政策,每天8002200为“峰时段”,2200至次日800为“谷时段”.嘉淇家使用的是峰谷电价,他将家里20181月至5月的峰时段和谷时段用电量绘制成如图所示的条形统计图,已知嘉淇家1月份电费为51.8元,2月份电费为50.85元.

1)“峰电”每度  元,“谷电”每度 

2)嘉淇家3月份用电量比这5个月的平均用电量少1度,且3月份所交电费为49.54元,则3月份“峰电”度数为  度;

320186月,嘉淇单位决定给职工补贴前五个月中的两个月份的电费,求恰好选中3月份和4月份的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆;两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF长度远大于车辆宽度),其中ABBCEFBC,∠AEF143°,ABAE1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60cos37°≈0.80tan37°≈0.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为半圆O的直径,AC是⊙O的一条弦,D的中点,作DEAC,交AB的延长线于点F,连接DA

(1)求证:EF为半圆O的切线;

(2)若DADF=6,求阴影区域的面积.(结果保留根号和π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线C1y=﹣(x+m2+m2m0),抛物线C2y=(xn2+n2n0),称抛物线C1C2互为派对抛物线,例如抛物线C1y=﹣(x+12+1与抛物线C2y=(x2+2是派对抛物线,已知派对抛物线C1C2的顶点分别为AB,抛物线C1的对称轴交抛物线C2C,抛物线C2的对称轴交抛物线C1D

1)已知抛物线①y=﹣x22x②y=(x32+3③y=(x2+2④yx2x+,则抛物线①②③④中互为派对抛物线的是   (请在横线上填写抛物线的数字序号);

2)如图1,当m1n2时,证明ACBD

3)如图2,连接ABCD交于点F,延长BAx轴的负半轴于点E,记BDx轴于GCDx轴于点H,∠BEO=∠BDC

求证:四边形ACBD是菱形;

若已知抛物线C2y=(x22+4,请求出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴交于点,与直线交于点,直线轴交于点

(1)求该抛物线的解析式.

(2)是抛物线上第四象限上的一个动点,连接,当的面积最大时,求点的坐标.

(3)将抛物线的对称轴向左平移3个长度单位得到直线,点是直线上一点,连接,若直线上存在使最大的点,请直接写出满足条件的点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案