【题目】为有效利用电力资源,某市电力局采用“峰谷”用电政策,每天8:00﹣22:00为“峰时段”,22:00至次日8:00为“谷时段”.嘉淇家使用的是峰谷电价,他将家里2018年1月至5月的峰时段和谷时段用电量绘制成如图所示的条形统计图,已知嘉淇家1月份电费为51.8元,2月份电费为50.85元.
(1)“峰电”每度 元,“谷电”每度 ;
(2)嘉淇家3月份用电量比这5个月的平均用电量少1度,且3月份所交电费为49.54元,则3月份“峰电”度数为 度;
(3)2018年6月,嘉淇单位决定给职工补贴前五个月中的两个月份的电费,求恰好选中3月份和4月份的概率.
【答案】(1)0.61,0.3;(2)64;(3)P(选中3月份和4月份)=.
【解析】
(1)设“峰电”每度x元,“谷电”每度y元,由条形统计表得出方程组,解方程组即可;
(2)设嘉淇家3月份“峰电”度数为x,“谷电”度数为y,根据题意得出方程组,解方程组即可;
(3)由列表法得出共有20种等可能事件,由概率公式即可得出结果.
(1)设“峰电”每度x元,“谷电”每度y元,
由条形统计表得:,
解得:,
∴“峰电”每度0.61元,“谷电”每度0.3元,
故答案为0.61,0.3;
(2)设嘉淇家3月份“峰电”度数为x,“谷电”度数为y,
根据题意得:,
解得:,
∴嘉淇家3月份“峰电”度数为64,
故答案为:64;
(3)前五个月中的选中任两个月份情况列表如下:
1 | 2 | 3 | 4 | 5 | |
1 | (1,2) | (1,3) | (1,4) | (1,5) | |
2 | (2,1) | (2,3) | (2,4) | (2,5) | |
3 | (3,1) | (3,2) | 3,4) | (3,5) | |
4 | (4,1) | (4,2) | (4,3) | (4,5) | |
5 | (5,1) | (5,2) | (5,3) | (5,4) |
共有20种等可能事件,选中3月份和4月份的结果有2个,
∴P(选中3月份和4月份)==.
科目:初中数学 来源: 题型:
【题目】第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x套,乙种图书y套,请解答下列问题:
(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);
(2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套?
(3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA,OC分别在x轴,y轴上,OC=7,点B在第一象限,点D在边AB上,点E在边BC上,且∠BDE=30°,将△BDE沿DE折叠得到△B′DE.若AD=1,反比例函数y=(k≠0)的图象恰好经过点B′,D,则k的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,AD=4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90°得线段PQ.
(1)当点Q落到AD上时,∠PAB=____°,PA=_____,长为_____;
(2)当AP⊥BD时,记此时点P为P0,点Q为Q0,移动点P的位置,求∠QQ0D的大小;
(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;
(4)点P在线段BD上,由B向D运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺(在RtΔABC中,∠ACB=90°,∠B=60°;在RtΔEDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C.将RtΔEDF绕点D顺时针方向旋转角α(0°<α<60°), DE交AC于点M,DF交BC于点N,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF= ,则点F与点C的最小距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,
①连接BC、CD、BD,设BD交直线AC于点E,△CDE的面积为S1,△BCE的面积为S2.求:的最大值;
②如图2,是否存在点D,使得∠DCA=2∠BAC?若存在,直接写出点D的坐标,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l的解析式为y=﹣x+4,它与x轴和y轴分别相交于A,B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动.它与x轴和y轴分别相交于C,D两点,运动时间为t秒(0≤t≤4),以CD为斜边作等腰直角三角形CDE(E,O两点分别在CD两侧).若△CDE和△OAB的重合部分的面积为S,则S与t之间的函数关系的图象大致是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com