精英家教网 > 初中数学 > 题目详情

【题目】1)计算: 2sin45°+2π01

2先化简,再求值 a2b2),其中a=b=2

【答案】(1) -2 (2)-

【解析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;

(2)先把a2b2分解因式约分化简,然后将ab的值代入化简后的式子中计算,即可得到原式的值.

解:1﹣2sin45°+2﹣π01

=2﹣2×+1﹣3

=2+1﹣3

=﹣2

2a2﹣b2

=a+b)(a﹣b

=a+b

a=b=﹣2时,原式=+﹣2=﹣

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ADABC的中线,AEBCBEAD于点F,且AF=DF.

(1)求证:AFEODFB

(2)求证:四边形ADCE是平行四边形;

(3)ABAC之间满足什么条件时,四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A. B两地果园分别有苹果30吨和40吨,C. D两地的农贸市场分别需求苹果20吨和50吨。已知从A. B两地到C. D两地的运价如表:

(1)填空:若从A果园运到C地的苹果为10吨,则从A果园运到D地的苹果为___吨,从B果园运到C地的苹果为___吨,从B果园运到D地的苹果为___吨,总运输费为___元;

(2)如果总运输费为750元时,那么从A果园运到C地的苹果为多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.

(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?

(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么丽商场至少需购进多少件A种商品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列两个式子:22×+155×+1.给出定义如下:我们称使等式abab+1成立的一对有理数ab为“共生有理数对”,记为(ab),数对(2),和(5)都是“共生有理数对”.

1)数对(﹣21)和(3)中是“共生有理数对”的是 

2)若(a,﹣)是“共生有理数对”,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知P12).

1)在平面直角坐标系中描出点P(保留画图痕迹);

2)如果将点P向左平移3个单位长度,再向上平移1个单位长度得到点P',则点P'的坐标为 

3)点A在坐标轴上,若SOAP2,直接写出满足条件的点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】右图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )

A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.

(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;

(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一个正方形ABCD,P是边BC上一点.绕点A逆时针方向旋转90°得到(点B,P的对应点分别是

1)画出旋转后所得到的

2)联结,设,试用表示的面积;

3)若的面积为18的面积为5,试求PC的长.

查看答案和解析>>

同步练习册答案