精英家教网 > 初中数学 > 题目详情
3.化简:
(1)$\sqrt{24}$-($\sqrt{\frac{1}{2}}$+3$\sqrt{\frac{2}{3}}$)-($\sqrt{\frac{1}{8}}$-$\sqrt{6}$);
(2)a$\sqrt{\frac{1}{a}}$+$\sqrt{4b}$-($\frac{\sqrt{a}}{2}$-b$\sqrt{\frac{1}{b}}$)

分析 (1)、(2)先把各根式化为最减二次根式,再去括号,合并同类项即可.

解答 解:(1)原式=2$\sqrt{6}$-($\frac{\sqrt{2}}{2}$+$\sqrt{6}$)-($\frac{\sqrt{2}}{4}$-$\sqrt{6}$)
=2$\sqrt{6}$-$\frac{\sqrt{2}}{2}$-$\sqrt{6}$-$\frac{\sqrt{2}}{4}$+$\sqrt{6}$
=2$\sqrt{6}$-$\frac{3\sqrt{2}}{4}$;

(2)原式=$\sqrt{a}$+2$\sqrt{b}$-$\frac{\sqrt{a}}{2}$+$\sqrt{b}$
=$\frac{\sqrt{a}}{2}$+3$\sqrt{b}$.

点评 本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2
例如:x2-2x+4的三种不同形式的配方是(x-1)2+3、(x-2)2+2x、($\frac{1}{2}$x-2)2+$\frac{3}{4}$x2(即“余项”分别是常数项、一次项、二次项).
(1)比照上面的例子,写出x2-6x+3三种不同形式的配方;
(2)利用配方法求当a、b的值分别取多少时代数式a2+b2-ab-3b+4可以取到最大或最小值,最大或最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.若函数y=$\frac{k}{x}$的图象过点(3,-2),那么它一定还经过点(  )
A.(3,2)B.(-3,-2)C.(2,-2)D.(-1,6)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法:个体每名学生的初中毕业考试数学成绩;样本容量1000.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,正方形ABCD的边长为1,动点E在BC上,∠AEF=90°,EF交DC于F,当线段FC最长时,BE的长为$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.一次函数经过点(2,3)和(0,4).
(1)求一次函数的解析式;
(2)在平面直角坐标系中画出它的图象;
(3)当-2≤y≤2时,利用图象求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.有n支球队参加排球联赛,每队都与其余各队比赛2场,联赛的总场次为132次,问共有多少支球队参加联赛?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:$\frac{3}{{x}^{2}+x-6}$-$\frac{x}{2-x}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.求值:$\sqrt{\frac{(sin75°+\sqrt{π})^{0}-|1-\sqrt{2}|+2sin45°}{1+sin75°-\sqrt{1-si{n}^{2}15°}}}$.

查看答案和解析>>

同步练习册答案