【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,点P从点A出发以lcm/s的速度沿折线AC﹣CB运动,过点P作PQ⊥AB于点Q,当点P不与点A、B重合时,以线段PQ为边向右作正方形PQRS,设正方形PQRS与△ABC的重叠部分面积为S,点P的运动时间为t(s).
(1)用含t的代数式表示CP的长度;
(2)当点S落在BC边上时,求t的值;
(3)当正方形PQRS与△ABC的重叠部分不是五边形时,求S与t之间的函数关系式;
(4)连结CS,当直线CS分△ABC两部分的面积比为1:2时,直接写出t的值.
【答案】(1)当0<t<4时,CP=4﹣t,当4≤t<8时,CP=t﹣4;(2);(3)S=;(4)或
【解析】
(1)分两种情形分别求解即可.
(2)根据PA+PC=4,构建方程即可解决问题.
(3)分两种情形:如图2中,当0<t≤时,重叠部分是正方形PQRS,当4<t<8时,重叠部分是△PQB,分别求解即可.
(4)设直线CS交AB于E.分两种情形:如图4﹣1中,当AE=AB=时,满足条件.如图4﹣2中,当AE=AB时,满足条件.分别求解即可解决问题.
解:(1)当0<t<4时,∵AC=4,AP=t,
∴PC=AC﹣AP=4﹣t;
当4≤t<8时,CP=t﹣4;
(2)如图1中,点S落在BC边上,
∵PA=t,AQ=QP,∠AQP=90°,
∴AQ=PQ=PS=t,
∵CP=CS,∠C=90°,
∴PC=CS=t,
∵AP+PC=BC=4,
∴t+t=4,
解得t=.
(3)如图2中,当0<t≤时,重叠部分是正方形PQRS,S=(t)2=t2.
当4<t<8时,重叠部分是△PQB,S=(8﹣t)2.
综上所述,S=.
(4)设直线CS交AB于E.
如图4﹣1中,当AE=AB=时,满足条件,
∵PS∥AE,
∴,
∴,
解得t=.
如图4﹣2中,当AE=AB时,满足条件.
同法可得:,
解得t=,
综上所述,满足条件的t的值为或.
科目:初中数学 来源: 题型:
【题目】如图所示,某中学九年级数学活动小组选定测量学校前面小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若斜坡FA的坡比i=1:,求大树的高度.(结果保留一位小数)参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,取1.73.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学概念
若点在的内部,且、和中有两个角相等,则称是的“等角点”,特别地,若这三个角都相等,则称是的“强等角点”.
理解概念
(1)若点是的等角点,且,则的度数是 .
(2)已知点在的外部,且与点在的异侧,并满足,作的外接圆,连接,交圆于点.当的边满足下面的条件时,求证:是的等角点.(要求:只选择其中一道题进行证明!)
①如图①,
②如图②,
深入思考
(3)如图③,在中,、、均小于,用直尺和圆规作它的强等角点.(不写作法,保留作图痕迹)
(4)下列关于“等角点”、“强等角点”的说法:
①直角三角形的内心是它的等角点;
②等腰三角形的内心和外心都是它的等角点;
③正三角形的中心是它的强等角点;
④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;
⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.
(1)求证:AB=AC;
(2)若AB=4,BC=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,5)、C(0,3).
(1)请在网格所在的平面内画出平面直角坐标系,并写出点B的坐标.
(2)将△ABC绕着原点顺时针旋转90°得△A1B1C1,画出△A1B1C1.
(3)在直线y=1上存在一点P,使PA+PC的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:
(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.
(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?
(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com