【题目】已知抛物线y=ax2+bx过点A(1,4)、B(﹣3,0),过点A作直线AC∥x轴,交抛物线于另一点C,在x轴上有一点D(4,0),连接CD.
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得CD平分∠ACQ,请求出点Q的坐标;
(3)在直线CD的下方的抛物线上取一点N,过点N作NG∥y轴交CD于点G,以NG为直径画圆在直线CD上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段CD上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
【答案】(1)直线CE的表达式为y=﹣x﹣;(2)点Q的坐标为(﹣,﹣);(3)弦GH的最大值;(4)存在,t的值为3或7
【解析】
(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;
(2)利用二次函数图象上点的坐标特征求出点C的坐标,结合点A、D的坐标可得出AC、AD的长,取点E(﹣1,0),连接CE交抛物线于点Q,则四边形ACED为菱形,由点C、E的坐标,利用待定系数法可求出直线CE的表达式,联立直线CE与抛物线表达式成方程组,通过解方程组即可求出点Q的坐标;
(3)由点C、D的坐标,利用待定系数法可求出直线CD的表达式,设点N的坐标为(x,x2+3x),则点G的坐标为(x,﹣x+2),进而可得出NG=﹣x2﹣x+2,利用二次函数的性质可求出NG的最大值,以NG为直径画⊙O′,取GH的中点F,连接O′F,则O′F⊥BC,通过解直角三角形可得出GH=NG,代入NG的最大值即可求出弦GH的最大值;
(4)取点E(﹣1,0),连接CE、AE,过点E作EP1⊥AC于点P1,交CD于点M1,过点E作EP2⊥AD于点P2,交CD于点M2,由AC∥x轴及点A的坐标可得出EP1=4,由菱形的对称性可得出EP2=4,根据点C和点E的坐标可得出CP1、DP2的长度,再结合AC、AD的长即可求出t的值,此题得解.
解:(1)∵抛物线y=ax2+bx过点A(1,4)、B(﹣3,0),
∴ ,解得:a=1,b=3,
∴抛物线的表达式为y=x2+3x.
(2)当y=4时,有x2+3x=4,
解得:x1=﹣4,x2=1,
∴点C的坐标为(﹣4,4),
∴AC=1﹣(﹣4)=5.
∵A(1,4),D(4,0),
∴AD=5.
取点E(﹣1,0),连接CE交抛物线于点Q,如图1所示.
∵AC=5,DE=4﹣(﹣1)=5,AC∥DE,
∴四边形ACED为平行四边形,
∵AC=AD,
∴四边形ACED为菱形,
∴CD平分∠ACQ.
设直线CE的表达式为y=mx+n(m≠0),
将C(﹣4,4)、E(﹣1,0)代入y=mx+n,得:
,解得:,
∴直线CE的表达式为y=﹣x﹣.
联立直线CE与抛物线表达式成方程组,得: ,
解得: ,
∴点Q的坐标为(﹣,﹣).
(3)设直线CD的表达式为y=kx+c(k≠0),
将C(﹣4,4)、D(4,0)代入y=kx+c,得:
,解得: ,
∴直线CD的表达式为y=﹣x+2.
设点N的坐标为(x,x2+3x),则点G的坐标为(x,﹣x+2),
∴NG=﹣x+2﹣(x2+3x)=﹣x2﹣x+2=﹣(x+)2+,
∵﹣1<0,
∴当x=﹣时,NG取最大值,最大值为.
以NG为直径画⊙O′,取GH的中点F,连接O′F,则O′F⊥BC,如图2所示.
∵直线CD的表达式为y=﹣x+2,NG∥y轴,O′F⊥BC,
∴tan∠GO′F==,
∴,
∴GH=2GF= O′G=NG,
∴弦GH的最大值为×=.
(4)取点E(﹣1,0),连接CE、AE,过点E作EP1⊥AC于点P1,交CD于点M1,过点E作EP2⊥AD于点P2,交CD于点M2,如图3所示.
∵四边形ACED为菱形,
∴点A、E关于CD对称,
∴AM=EM.
∵AC∥x轴,点A的坐标为(1,4),
∴EP1=4.
由菱形的对称性可知EP2=4.
∵点E的坐标为(﹣1,0),
∴点P1的坐标为(﹣1,4),
∴CP1=DP2=﹣1﹣(﹣4)=3,
又∵AC=AD=5,
∴t的值为3或7.
科目:初中数学 来源: 题型:
【题目】如下图,已知直线分别与轴,轴交于,两点,直线:交于点.
(1)求,两点的坐标;
(2)如图1,点E是线段OB的中点,连结AE,点F是射线OG上一点, 当,且时,求的长;
(3)如图2,若,过点作∥,交轴于点,此时在轴上是否存在点,使,若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面材料:小明遇到这样一个问题:如图1,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE、DE分别平分∠DAB、∠CDA.求证:AD=AB+CD.
小明经探究发现,在AD上截取AF=AB,连接EF(如图2),从而可证△AEF≌△AEB,使问题得到解决.
(1)请你按照小明的探究思路,完成他的证明过程;
参考小明思考问题的方法,解决下面的问题:
(2)如图3,△ABC是等腰直角三角形,∠A=90°,点D为边AC上任意一点(不与点A、B重合),以BD为腰作等腰直角△BDE,∠DBE=90°.过点E作BE⊥EG交BA的延长线于点G,过点D作DF⊥BD,交BC于点F,连接FG,猜想EG、DF、FG之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店按进货价每件6元购进一批货,零售价为8元时,可以卖出100件,如果零售价高于8元,那么一件也卖不出去,零售价从8元每降低0.1元,可以多卖出10件.设零售价定为x元(6≤x≤8).
(1)这时比零售为8元可以多卖出几件?
(2)这时可以卖出多少件?
(3)这时所获利润y(元)与零售价x(元)的关系式怎样?
(4)为零售价定为多少时,所获利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
成绩分组 | 频数 | 频率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合计 | ■ | 1 |
(1)写出a,b,c的值;
(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】合肥享有“中国淡水龙虾之都”的美称.甲乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲,y乙(单位元)与人数之间的函数关系如图所示.
(1)直接写出y甲,y乙关于x的函数关系式.
(2)小王公司想在“龙虾节”期间组织团建,在甲乙两家店就餐,如何选择甲乙两家美食店吃小龙虾更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出四个等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C.现选取其中的三个,以两个作为已知条件,另一个作为结论.
(1)请你写出一个正确的命题,并加以证明;
(2)请你至少写出三个这样的正确命题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.在一次课题设计活动中,小明对修建一座87m长的水库大坝提出了以下方案;大坝的横截面为等腰梯形,如图,∥,坝高10m,迎水坡面的坡度,老师看后,从力学的角度对此方案提出了建议,小明决定在原方案的基础上,将迎水坡面的坡度进行修改,修改后的迎水坡面的坡度。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com