【题目】完成下面的推理过程,并在括号内填上依据.
如图,E为DF上的一点,B为AC上的一点,∠1=∠2,∠C=∠D,求证:AC∥DF
证明:∵∠1=∠2()
∠1=∠3( 对角线相等)
∴∠2=∠3()
∴∥()
∴∠C=∠ABD()
又∵∠C=∠D(已知)
∴∠D=∠ABD()
∴AC∥DF()
【答案】已知;等量代换;BD;CE;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行
【解析】证明:∵∠1=∠2(已知)
∠1=∠3(对角线相等)
∴∠2=∠3(等量代换)
∴BD∥CE(同位角相等,两直线平行)
∴∠C=∠ABD(两直线平行,同位角相等)
又∵∠C=∠D(已知)
∴∠D=∠ABD(等量代换)
∴AC∥DF(内错角相等,两直线平行).
所以答案是:已知,等量代换,BD,CE,同位角相等,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.
【考点精析】利用平行线的判定对题目进行判断即可得到答案,需要熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:
【题目】如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF.
(1)求证:AF∥CE;
(2)探究线段AF,EF,EC之间的数量关系,并说明理由;
(3)若BC=6,BG=8,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,点P(-2,a), Q(-2,a-5),若△POQ是直角三角形,则点P的坐标不可能为( )
A. (-2,4 )B. (-2, 0)C. (-2, 5)D. (-2,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将n个边长都为1cm的正方形按如图所示的方法摆放,点A1 , A2 , …,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为( )
A.cm2
B.cm2
C.cm2
D.( )ncm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com