17£®Èçͼ1£¬Ö±Ïßy=2xÓë·´±ÈÀýº¯Êýy=$\frac{m}{x}$µÄͼÏó½»ÓÚµãA£¨3£¬n£©£¬µãBÊÇÏß¶ÎOAÉϵÄÒ»¸ö¶¯µã£®
£¨1£©Ôòm=18£¬OA=3$\sqrt{5}$£»
£¨2£©½«Èý½Ç°åµÄÖ±½Ç¶¥µã·ÅÖÃÔÚµãB´¦£¬Èý½Ç°åµÄÁ½ÌõÖ±½Ç±ß·Ö±ð½»xÖá¡¢yÖáÓÚC¡¢DÁ½µã£¬Çó$\frac{BC}{BD}$µÄÖµ£»
£¨3£©Èçͼ2£¬BÊÇÏß¶ÎOAµÄÖе㣬EÔÚ·´±ÈÀýº¯ÊýµÄͼÏóÉÏ£¬ÊÔ̽¾¿£ºÔÚxÖáÉÏÊÇ·ñ´æÔÚµãF£¬Ê¹µÃ¡ÏEAB=¡ÏEBF=¡ÏAOF£¿Èç¹û´æÔÚ£¬ÊÔÇó³öµãFµÄ×ø±ê£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏȰÑA£¨3£¬n£©´úÈëy=2xÇó³ön£¬´Ó¶øµÃµ½A£¨3£¬6£©£¬ÔÙÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËã³öOA=3$\sqrt{5}$£¬È»ºó¸ù¾Ý·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷Ò×µÃm=18£»
£¨2£©¹ýB·Ö±ð×÷xÖáºÍyÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪM¡¢N£¬Èçͼ1£¬ÉèB£¨a£¬2a£©£¬ÔòBM=2a£¬BN=a£¬ÀûÓõȽǵÄÓà½ÇÏàµÈµÃµ½¡ÏMBC=¡ÏDBN£¬ÓÚÊÇ¿ÉÅжÏRt¡÷MBC¡×Rt¡÷DBN£¬È»ºóÀûÓÃÏàËÆ±ÈÒ×µÃ$\frac{BC}{BD}$=2£»
£¨3£©×÷AH¡ÍyÖáÓÚH£¬ÑÓ³¤AE½»xÖáÓÚGµã£¬Á¬½áGB£¬Èçͼ2£¬ÓÉ¡ÏEAB=¡ÏAOFµÃµ½¡÷GAOΪµÈÑüÈý½ÇÐΣ¬ÔÙ¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖʵÃGB¡ÍOA£¬½Ó×ÅÖ¤Ã÷Rt¡÷OBG¡×Rt¡÷AHO£¬ÀûÓÃÏàËÆ±È¼ÆËã³öOG=$\frac{15}{2}$£¬µÃµ½G£¨$\frac{15}{2}$£¬0£©£¬È»ºóÀûÓôý¶¨ÏµÊý·¨Çó³öÖ±ÏßAGµÄ½âÎöʽΪy=-$\frac{4}{3}$x+10£¬Ôòͨ¹ý½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{18}{x}}\\{y=-\frac{4}{3}x+10}\end{array}\right.$µÃEµã×ø±êΪ£¨$\frac{9}{2}$£¬4£©£¬ÓÚÊÇ¿ÉÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËã³öAE=$\frac{5}{2}$£¬×îºóÖ¤Ã÷¡÷ABE¡×¡÷OFB£¬ÀûÓÃÏàËÆ±È¼ÆËã³öOF£¬´Ó¶øµÃµ½FµãµÄ×ø±ê£®

½â´ð ½â£º£¨1£©°ÑA£¨3£¬n£©´úÈëy=2xµÃn=2¡Á3=6£¬ÔòA£¨3£¬6£©£¬
ËùÒÔOA=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$£¬
¶øµãAÔÚ·´±ÈÀýº¯Êýy=$\frac{m}{x}$ͼÏóÉÏ£¬
ËùÒÔm=3¡Á6=18£»
¹Ê´ð°¸Îª18£¬3$\sqrt{5}$£»
£¨2£©¹ýB·Ö±ð×÷xÖáºÍyÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪM¡¢N£¬Èçͼ1£¬ÉèB£¨a£¬2a£©£¬ÔòBM=2a£¬BN=a£¬
¡ß¡ÏMBC+¡ÏMBD=90¡ã£¬¡ÏDBN+¡ÏMBD=90¡ã£¬
¡à¡ÏMBC=¡ÏDBN£¬
¡àRt¡÷MBC¡×Rt¡÷DBN£¬
¡à$\frac{BC}{BD}$=$\frac{BM}{BN}$=$\frac{2a}{a}$=2£»
£¨3£©´æÔÚ£®
×÷AH¡ÍyÖáÓÚH£¬ÑÓ³¤AE½»xÖáÓÚGµã£¬Á¬½áGB£¬Èçͼ2£¬
¡ß¡ÏEAB=¡ÏAOF£¬
¡à¡÷GAOΪµÈÑüÈý½ÇÐΣ¬
¡ßBÊÇÏß¶ÎOAµÄÖе㣬
¡àGB¡ÍOA£¬
¡ßAH¡ÎxÖᣬ
¡à¡ÏOAH=¡ÏGOB£¬
¡àRt¡÷OBG¡×Rt¡÷AHO£¬
¡à$\frac{OG}{OA}$=$\frac{OB}{AH}$£¬¼´$\frac{OG}{3\sqrt{5}}$=$\frac{\frac{3\sqrt{5}}{2}}{3}$£¬½âµÃOG=$\frac{15}{2}$
¡àG£¨$\frac{15}{2}$£¬0£©£¬
ÉèÖ±ÏßAGµÄ½âÎöʽΪy=kx+b£¬
°ÑA£¨3£¬6£©£¬G£¨$\frac{15}{2}$£¬0£©´úÈëµÃ$\left\{\begin{array}{l}{3k+b=6}\\{\frac{15}{2}k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=-\frac{4}{3}}\\{b=10}\end{array}\right.$£®
¡àÖ±ÏßAGµÄ½âÎöʽΪy=-$\frac{4}{3}$x+10£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{18}{x}}\\{y=-\frac{4}{3}x+10}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=\frac{9}{2}}\\{y=4}\end{array}\right.$£¬
¡àEµã×ø±êΪ£¨$\frac{9}{2}$£¬4£©£¬
¡àAE=$\sqrt{£¨3-\frac{9}{2}£©^{2}+£¨6-4£©^{2}}$=$\frac{5}{2}$£¬
¡ß¡ÏEBO=¡ÏEAB+¡Ï2£¬¼´¡Ï1+¡ÏEBF=¡ÏEAB+¡Ï2£¬
¶ø¡ÏEAB=¡ÏEBF£¬
¡à¡Ï1=¡Ï2£¬
¡ß¡ÏEAB=¡ÏBOF£¬
¡à¡÷ABE¡×¡÷OFB£¬
¡à$\frac{AB}{OF}$=$\frac{AE}{OB}$£¬¼´$\frac{\frac{3\sqrt{5}}{2}}{OF}$=$\frac{\frac{5}{2}}{\frac{3\sqrt{5}}{2}}$£¬
¡àOF=$\frac{9}{2}$£¬
¡àFµãµÄ×ø±êΪ£¨$\frac{9}{2}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ºÍÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬ÄÜÔËÓÃÁ½µã¼äµÄ¾àÀ빫ʽ¼ÆËãÏ߶εij¤£»»áÀûÓÃÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʼÆËãÏ߶εij¤¶È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2•a3=a6B£®7a2-a2=7
C£®-$£¨-\frac{1}{2}£©^{-2}$•£¨xy2£©3=-4x3y6D£®£¨2m-n£©2=4m2+n2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®5-$\sqrt{7}$µÄÏà·´ÊýÊÇ$\sqrt{7}$-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬ADƽ·Ö¡ÏCAB£¬½»CBÓÚµãD£¬¹ýµãD×÷DE¡ÍAB£¬´¹×ãΪµãE£®
£¨1£©ÇóÖ¤£º¡÷ACD¡Õ¡÷AED£»
£¨2£©Èô¡ÏB=30¡ã£¬CD=2£¬Çó¡÷CBEµÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬Èý±ß¾ù²»µÈ³¤µÄÈñ½Ç¡÷ABC£¬ÈôÔÚ´ËÈý½ÇÐÎÄÚÕÒÒ»µãO£¬Ê¹µÃ¡÷OAB¡¢¡÷OBC¡¢¡÷OCAµÄÃæ»ý¾ùÏàµÈ£®ÏÂÁÐ×÷·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®×÷ÖÐÏßAD£¬ÔÙÈ¡ADµÄÖеãO
B£®·Ö±ð×÷AB¡¢BCµÄ¸ßÏߣ¬ÔÙÈ¡´ËÁ½¸ßÏߵĽ»µãO
C£®·Ö±ð×÷ÖÐÏßAD¡¢BE£¬ÔÙÈ¡´ËÁ½ÖÐÏߵĽ»µãO
D£®·Ö±ð×÷¡ÏA¡¢¡ÏBµÄ½Çƽ·ÖÏߣ¬ÔÙÈ¡´ËÁ½½Çƽ·ÖÏߵĽ»µãO

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìkx2-£¨2k-2£©x+£¨k-2£©=0£¨k¡Ù0£©£®
£¨1£©ÇóÖ¤£ºÎÞÂÛkÈ¡ºÎֵʱ£¬·½³Ì×ÜÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®
£¨2£©µ±kÈ¡ºÎÕûÊýʱ·½³ÌÓÐÕûÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ò»¸öÅú·¢ÉÌÏúÊ۳ɱ¾Îª20Ôª/ǧ¿ËµÄij²úÆ·£¬¸ù¾ÝÎï¼Û²¿ÃŹ涨£º¸Ã²úƷÿǧ¿ËÊÛ¼Û²»µÃ³¬¹ý90Ôª£¬ÔÚÏúÊÛ¹ý³ÌÖз¢ÏÖµÄÊÛÁ¿y£¨Ç§¿Ë£©ÓëÊÛ¼Ûx£¨Ôª/ǧ¿Ë£©Âú×ãÒ»´Îº¯Êý¹ØÏµ£¬¶ÔÓ¦¹ØÏµÈçÏÂ±í£º
ÊÛ¼Ûx£¨Ôª/ǧ¿Ë£©¡­50607080¡­
ÏúÊÛÁ¿y£¨Ç§¿Ë£©¡­100908070¡­
£¨1£©ÇóyÓëxµÄº¯Êý¹ØÏµÊ½£»
£¨2£©¸ÃÅú·¢ÉÌÈôÏë»ñµÃ4000ÔªµÄÀûÈó£¬Ó¦½«ÊÛ¼Û¶¨Îª¶àÉÙÔª£¿
£¨3£©¸Ã²úƷÿǧ¿ËÊÛ¼ÛΪ¶àÉÙԪʱ£¬Åú·¢ÉÌ»ñµÃµÄÀûÈów£¨Ôª£©×î´ó£¿´ËʱµÄ×î´óÀûÈóΪ¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÔĶÁ²ÄÁÏ£º°ÑÐÎÈçax2+bx+cµÄ¶þ´ÎÈýÏîʽ£¨»òÆäÒ»²¿·Ö£©Åä³ÉÍêȫƽ·½Ê½µÄ·½·¨½Ð×öÅä·½·¨£¬Åä·½·¨µÄ»ù±¾ÐÎʽÊÇÍêȫƽ·½¹«Ê½µÄÄæÐ´£¬¼´a2¡À2ab+b2=£¨a¡Àb£©2£®
ÀýÈ磺x2-2x+4µÄÈýÖÖ²»Í¬ÐÎʽµÄÅä·½ÊÇ£¨x-1£©2+3¡¢£¨x-2£©2+2x¡¢£¨$\frac{1}{2}$x-2£©2+$\frac{3}{4}$x2£¨¼´¡°ÓàÏ·Ö±ðÊdz£ÊýÏî¡¢Ò»´ÎÏî¡¢¶þ´ÎÏ£®
£¨1£©±ÈÕÕÉÏÃæµÄÀý×Ó£¬Ð´³öx2-6x+3ÈýÖÖ²»Í¬ÐÎʽµÄÅä·½£»
£¨2£©ÀûÓÃÅä·½·¨Çóµ±a¡¢bµÄÖµ·Ö±ðÈ¡¶àÉÙʱ´úÊýʽa2+b2-ab-3b+4¿ÉÒÔÈ¡µ½×î´ó»ò×îСֵ£¬×î´ó»ò×îСֵÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Èôº¯Êýy=$\frac{k}{x}$µÄͼÏó¹ýµã£¨3£¬-2£©£¬ÄÇôËüÒ»¶¨»¹¾­¹ýµã£¨¡¡¡¡£©
A£®£¨3£¬2£©B£®£¨-3£¬-2£©C£®£¨2£¬-2£©D£®£¨-1£¬6£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸