精英家教网 > 初中数学 > 题目详情
9.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克)50607080
销售量y(千克)100908070
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

分析 (1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式.
(2)根据想获得4000元的利润,列出方程求解即可;
(3)根据批发商获得的总利润w(元)=售量×每件利润可表示出w与x之间的函数表达式,再利用二次函数的最值可得出利润最大值.

解答 解:(1)设y与x的函数关系式为y=kx+b(k≠0),根据题意得
$\left\{\begin{array}{l}{50k+b=100}\\{60k+b=90}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=-1}\\{b=150}\end{array}\right.$.
故y与x的函数关系式为y=-x+150;

(2)根据题意得
(-x+150)(x-20)=4000,
解得x1=70,x2=100>90(不合题意,舍去).
故该批发商若想获得4000元的利润,应将售价定为70元;

(3)w与x的函数关系式为:
w=(-x+150)(x-20)
=-x2+170x-3000
=-(x-85)2+4225,
∵-1<0,
∴当x=85时,w值最大,w最大值是4225.
∴该产品每千克售价为85元时,批发商获得的利润w(元)最大,此时的最大利润为4225元.

点评 本题考查二次函数的应用,难度较大,解答本题的关键是根据题意列出方程,另外要注意掌握二次函数的最值的求法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.因式分解:
(1)a-6ab+9ab2
(2)x3-4x2-12x
(3)x2(x-y)+y2(y-x)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价,售价如表所示,该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,当购进甲种水果35千克时利润最大.
 进价(元/千克)售价(元/千克)
甲种58
乙种913

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,直线y=2x与反比例函数y=$\frac{m}{x}$的图象交于点A(3,n),点B是线段OA上的一个动点.
(1)则m=18,OA=3$\sqrt{5}$;
(2)将三角板的直角顶点放置在点B处,三角板的两条直角边分别交x轴、y轴于C、D两点,求$\frac{BC}{BD}$的值;
(3)如图2,B是线段OA的中点,E在反比例函数的图象上,试探究:在x轴上是否存在点F,使得∠EAB=∠EBF=∠AOF?如果存在,试求出点F的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.
(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线l与正方形有两个交点时,直接写出k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.若a,b为有理数,且$\sqrt{8}$×$\sqrt{18}$+$\sqrt{\frac{1}{8}}$=a+b$\sqrt{2}$,则ab=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且∠B=∠EAF=60°.求证:AE=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,有一边长为5的正方形ABCD和一等腰△PQR,PQ=PR=5,QR=8,点B、Q、C、R在同一直线l上,当Q、C两点重合时,等腰△PQR以每秒1cm的速度沿直线l按箭头所示的方向开始匀速运动,t秒后正方形ABCD和等腰△PQR重叠部分的面积为S.
(1)当t=3秒时,PQ与CD相交于点F,点E为QR的中点,连结PE,求证:△QCF∽△QEP.
(2)当t=5秒时,求S的值.
(3)当8≤t<9时,求S关于t的函数表达式.
(4)当9≤t≤13时,求S关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知矩形ABCD,AB=$\sqrt{3}$,BC=3,在BC上取两点E,F(E在F左边),以时为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形 (不含全等形),并证明;
(3)若△PEF的边EF在线段BC上以每秒1个单位的速度移动.设船的长为x,PH的长为y,请你写出x与y的函数式,并指出函数自变量的取值范围.

查看答案和解析>>

同步练习册答案