精英家教网 > 初中数学 > 题目详情
1.如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且∠B=∠EAF=60°.求证:AE=AF.

分析 连结AC,如图,根据菱形的性质得AB=BC,而∠B=60°,则可判定△ABC为等边三角形,得到∠2=60°,∠1+∠4=60°,AC=AB,易得∠ACF=60°,∠1=∠3,然后利用“ASA”可证明△AEB≌△AFC,于是得到AE=AF.

解答 证明:连结AC,如图,
∵四边形ABCD为菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC为等边三角形,
∴∠2=60°,∠1+∠4=60°,AC=AB,
∴∠ACF=60°,
∵∠EAF=60°,即∠3+∠4=60°,
∴∠1=∠3,
在△AEB和△AFC中,
$\left\{\begin{array}{l}{∠1=∠3}\\{AB=AC}\\{∠B=∠ACD}\end{array}\right.$,
∴△AEB≌△AFC,
∴AE=AF.

点评 本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了全等三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,在△ABC中,已知∠C=60°,∠B=40°,AD是△ABC的角平分线,AE是△ABC的高线,则∠DAE的度数为10°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,三边均不等长的锐角△ABC,若在此三角形内找一点O,使得△OAB、△OBC、△OCA的面积均相等.下列作法中正确的是(  )
A.作中线AD,再取AD的中点O
B.分别作AB、BC的高线,再取此两高线的交点O
C.分别作中线AD、BE,再取此两中线的交点O
D.分别作∠A、∠B的角平分线,再取此两角平分线的交点O

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
售价x(元/千克)50607080
销售量y(千克)100908070
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.某人上山后,立即下山,已知下山的速度是上山速度的3倍,则此人上下山的平均速度是上山速度的(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法,配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2
例如:x2-2x+4的三种不同形式的配方是(x-1)2+3、(x-2)2+2x、($\frac{1}{2}$x-2)2+$\frac{3}{4}$x2(即“余项”分别是常数项、一次项、二次项).
(1)比照上面的例子,写出x2-6x+3三种不同形式的配方;
(2)利用配方法求当a、b的值分别取多少时代数式a2+b2-ab-3b+4可以取到最大或最小值,最大或最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解关于m的方程:(1-$\sqrt{3}$)m2=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.关于x的方程$\frac{a}{x-3}$=2的解是正数,则a的取值范围是a>-6且a≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,正方形ABCD的边长为1,动点E在BC上,∠AEF=90°,EF交DC于F,当线段FC最长时,BE的长为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案