精英家教网 > 初中数学 > 题目详情
17.关于x的方程$\frac{a}{x-3}$=2的解是正数,则a的取值范围是a>-6且a≠0.

分析 分式方程去分母转化为整式方程,求出整式方程的解表示出x,即可确定出a的范围.

解答 解:去分母得:a=2x-6,即x=$\frac{a+6}{2}$,
由分式方程的解为正数,得到$\frac{a+6}{2}$>0,且$\frac{a+6}{2}$≠3,
解得:a>-6且a≠0,
故答案为:a>-6且a≠0

点评 此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价,售价如表所示,该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,当购进甲种水果35千克时利润最大.
 进价(元/千克)售价(元/千克)
甲种58
乙种913

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图所示,在菱形ABCD中,E,F分别是BC,CD上的点,且∠B=∠EAF=60°.求证:AE=AF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,有一边长为5的正方形ABCD和一等腰△PQR,PQ=PR=5,QR=8,点B、Q、C、R在同一直线l上,当Q、C两点重合时,等腰△PQR以每秒1cm的速度沿直线l按箭头所示的方向开始匀速运动,t秒后正方形ABCD和等腰△PQR重叠部分的面积为S.
(1)当t=3秒时,PQ与CD相交于点F,点E为QR的中点,连结PE,求证:△QCF∽△QEP.
(2)当t=5秒时,求S的值.
(3)当8≤t<9时,求S关于t的函数表达式.
(4)当9≤t≤13时,求S关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE、DE,DE交边BC于点F,设BE=x,CF=y.
(1)求y关于x的函数解析式,并写出x的取值范围;
(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证:∠CEB=∠COG;
(3)在(2)的条件下,当OG=$\frac{2\sqrt{5}}{5}$时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,下面说法正确的是(  )
A.如果∠1+∠3=180°,则l∥nB.如果∠2=∠4,则a∥b
C.如果∠1=∠4,则l∥mD.如果∠2=∠3,则m∥n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:$\frac{x-2}{x+2}$-$\frac{x+2}{x-2}$=$\frac{10}{{x}^{2}-4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,已知矩形ABCD,AB=$\sqrt{3}$,BC=3,在BC上取两点E,F(E在F左边),以时为边作等边三角形PEF,使顶点P在AD上,PE,PF分别交AC于点G,H.
(1)求△PEF的边长;
(2)在不添加辅助线的情况下,当F与C不重合时,从图中找出一对相似三角形 (不含全等形),并证明;
(3)若△PEF的边EF在线段BC上以每秒1个单位的速度移动.设船的长为x,PH的长为y,请你写出x与y的函数式,并指出函数自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知9a2-4b2=0,求代数式$\frac{a}{b}$-$\frac{b}{a}$-$\frac{{a}^{2}+{b}^{2}}{ab}$的值.

查看答案和解析>>

同步练习册答案