精英家教网 > 初中数学 > 题目详情
3.已知如图:矩形ABCD的边BC在x轴上,E为对角线AC、BD的交点,点B、D的坐标分别为B(1,0),D(3,3).
(1)写出点A和点E的坐标;
(2)反比例函数y1=$\frac{{k}_{1}}{x}$在第一象限的图象经过A点,求这个函数的解析式;
(3)判断点E是否在函数y1=$\frac{{k}_{1}}{x}$的图象上;
(4)一次函数y2=k2x+b的图象经过点A、C,观察图象,直接写出当y1<y2时,x的取值范围.

分析 (1)根据矩形的性质,即可求得A、E的坐标;
(2)利用待定系数法求得解析式即可;
(3)把E点代入判定即可;
(4)根据图象即可求得.

解答 解:(1)∵矩形ABCD的边BC在x轴上,B(1,0),D(3,3),
∴点A(1,3)点C(3,0),
∵E为对角线AC、BD的交点,
∴E为AC的中点,
∴E(2,$\frac{3}{2}$);
(2)∵反比例函数y1=$\frac{{k}_{1}}{x}$在第一象限的图象经过A点,
∴k1=1×3=3,
这个函数的解析式为y=$\frac{3}{x}$;
(3)把x=2代入y=$\frac{3}{x}$得,y=3,
∴点E在函数y1=$\frac{{k}_{1}}{x}$的图象上;
(4)由图象可知:当1<x<2时,y1<y2

点评 本题考查了反比例函数和一次函数的交点,考查了待定系数法求反比例函数的解析式,反比例函数图象上的坐标特征以及函数和不等式的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E.F为AB上的一点,CF⊥AD于H.下列判断正确的有(  )
A.AD是△ABE的角平分线B.BE是△ABD边AD上的中线
C.CH为△ACD边AD上的高D.AH为△ABC的角平分线

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,已知△ABC中,AB=AC=16cm,∠B=∠C,BC=10cm,点D为AB的中点,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若当△BPD与△CQP全等时,则点Q运动速度可能为2或3.2厘米/秒.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图所示,有两种形状不同的直角三角形纸片各两块,其中一种纸片的两条直角边长都为3,另一种纸片的两条直角边长分别为1和3.图1、图2、图3是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1.

(1)请用三种方法(拼出的两个图形只要不全等就认为是不同的拼法)将图中所给四块直角三角形纸片拼成平行四边形(非矩形),每种方法要把图中所给的四块直角三角形纸片全部用上,互不重叠且不留空隙,并把你所拼得的图形按实际大小画在图1、图2、图3的方格纸上(要求:所画图形各顶点必须与方格纸中的小正方形顶点重合;画图时,要保留四块直角三角形纸片的拼接痕迹);
(2)三种方法所拼得的平行四边形的面积是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的面积各是多少;
(3)三种方法所拼得的平行四边形的周长是否是定值?若是定值,请直接写出这个定值;若不是定值,请直接写出三种方法所拼得的平行四边形的周长各是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,AB=AD,AC=AE,∠BAC=∠DAE,DB交AC于F,且BF=DF,CE交AD于G.求证:CG=EG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.对于两个相似三角形,如果沿周界按对应点顺序环绕的方向相同,那么称这两个三角形互为顺相似;如果沿周界按对应点顺序环绕的方向相反,那么称这两个三角形互为逆相似.例如,如图①,△ABC∽△A′B′C′且沿周界ABCA与A′、B′、C′、A′环绕的方向相同,因此△ABC 与△A′B′C′互为顺相似;如图②,△ABC∽△A′B′C′,且沿周界ABCA与 A′、B′、C′、A′环绕的方向相反,因此△ABC 与△A′B′C′互为逆相似.
(1)根据图I、图Ⅱ和图Ⅲ满足的条件,可得下列三对相似三角形:①△ADE与△ABC;②△GHO与△KFO;③△NQP与△NMQ.其中,互为顺相似的是①②;互为逆相似的是③.(填写所有符合要求的序号)
(2)如图③,在锐角△ABC中,∠A<∠B<∠C,点P在△ABC的边上(不与点A、B、C重合).过点P画直线截△ABC,使截得的一个三角形与△ABC互为逆相似.请根据点P的不同位置,探索过点P的截线的情形,画出图形并说明截线满足的条件,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)通过计算,补全条形统计图;
(2)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天参与户外活动所用的总时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知△ABC的三个顶点的坐标分别为A(-2.3)、B(-6,0)、C(-1,0)
(1)画出△ABC关于原点对称的三角形△A′B′C′;
(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点B的对应点B′的坐标;
(3)画出以A、B、C、D为顶点的平行四边形,并写出第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,直线y=-$\frac{1}{2}$x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0).
(1)求B,C两点坐标;
(2)求该二次函数的关系式;
(3)若抛物线的对称轴与x轴的交点为点D,点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;
(4)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明问题.

查看答案和解析>>

同步练习册答案