【题目】为了解某区2014年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表:
成绩等级 | A | B | C | D |
人数 | 60 | 10 |
请根据以上统计图表提供的信息,解答下列问题:
(1)本次抽查的学生有______ 名,成绩为B类的学生人数为______ 名,C类成绩所在扇形的圆心角度数为______
(2)请补全条形统计图;
(3)根据抽样调查结果,请估计该区约5000名八年级学生体育测试成绩为D类的学生人数.
【答案】(1)200,100,;(2)见解析;(3)250人
【解析】
(1)根据D类的人数除以占的百分比求出调查的学生总数,继而确定出B类的人数与C类占的角度即可;
(2)求出B与C类的人数,补全条形统计图即可;
(3)由D占的百分比,乘以5000即可得到结果.
解:(1)根据题意得:10÷5%=200(名);成绩为B类的学生人数为200×50%=100(名);成绩C类占的角度为15%×360°=54°;
则本次抽查的学生有200名;成绩为B类的学生人数为100名,C类成绩所在扇形的圆心角度数为54°;
故答案为:200;100;54°;
(2)根据题意得:B类人数为100人,C类人数为30人,
补全条形统计图,如图所示:
(3)根据题意得:5000×5%=250(人),
则该区约5000名八年级学生实验成绩为D类的学生约为250人.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=BC=10,tan∠ABC=,点P是边BC上的一点,M是线段AP上一点,线段PM绕点P顺时针旋转90°得线段PN,设BP=t.
(1)如图①,当点P在点B,点M是AP中点时,试求AN的长;
(2)如图②,当=时,
①求点N到BC边的距离(用含t的代数式表示);
②当点P从点B运动至点C时,试求点N运动路径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△EFG中,∠G=90°,,正方形ABCD的边长为1,将正方形ABCD和△EFG如图放置,AD与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,当点A与点F重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(学习心得)
于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.
例如:如图1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且AD=AC,求∠BDC的度数.若以点A为圆心,AB为半径作辅助⊙A,则点C、D必在⊙A上,∠BAC是⊙A的圆心角,而∠BDC是圆周角,从而可容易得到∠BDC= °.
(2)(问题解决)
如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的度数.
(3)(问题拓展)
如图3,如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(4分)一元二次方程的根的情况是( )
A.有两个不相等的实数根 B.有两个相等的实数根
C.没有实数根 D.无法确定
【答案】A.
【解析】
试题∵△=,∴方程有两个不相等的实数根.故选A.
考点:根的判别式.
【题型】单选题
【结束】
9
【题目】已知直线y=kx(k>0)与双曲线交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为【 】
A.﹣6 B.﹣9 C.0 D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度,他站在距离教学楼底部处6米远的地面处,测得宣传牌的底部的仰角为,同时测得教学楼窗户处的仰角为(、、、在同一直线上).然后,小明沿坡度的斜坡从走到处,此时正好与地面平行.
(1)求点到直线的距离(结果保留根号);
(2)若小明在处又测得宣传牌顶部的仰角为,求宣传牌的高度(结果精确到0.1米,,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点 A 的坐标是(﹣2,0),点 B 的坐标是(0,6),C 为 OB 的中点,将△ABC 绕点 B 逆时针旋转 90°后得到△A′B′C′.若反比例函数 y 的图象恰好经过 A′B 的中点 D,则k _________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与反比例函数(>0)的图象分别交于点 A(,4)和点B(8,),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)观察图象,当时,直接写出的解集;
(3)若点P是轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC .
(1)如图1,判断△BCE的形状,并说明理由;
(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com